Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year 4.890
  • CiteScore value: 4.49 CiteScore 4.49
  • SNIP value: 1.539 SNIP 1.539
  • SJR value: 2.404 SJR 2.404
  • IPP value: 4.28 IPP 4.28
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 51 Scimago H index 51
Volume 10, issue 12 | Copyright
Geosci. Model Dev., 10, 4743-4758, 2017
https://doi.org/10.5194/gmd-10-4743-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 4.0 License.

Development and technical paper 22 Dec 2017

Development and technical paper | 22 Dec 2017

A case study of aerosol data assimilation with the Community Multi-scale Air Quality Model over the contiguous United States using 3D-Var and optimal interpolation methods

Youhua Tang et al.
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Peer review completion
AR: Author's response | RR: Referee report | ED: Editor decision
AR by Anna Wenzel on behalf of the Authors (10 Oct 2017)  Author's response
ED: Publish as is (17 Nov 2017) by Samuel Remy
Publications Copernicus
Download
Short summary
In order to evaluate the data assimilation tools for regional real-time PM2.5 forecasts, we applied a 3D-Var assimilation tool to adjust the aerosol initial condition by assimilating satellite-retrieved aerosol optical depth and surface PM2.5 observations for a regional air quality model, which is compared to another assimilation method, optimal interpolation. We discuss the pros and cons of these two assimilation methods based on the comparison of their 1-month four-cycles-per-day runs.
In order to evaluate the data assimilation tools for regional real-time PM2.5 forecasts, we...
Citation
Share