Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year 4.890
  • CiteScore value: 4.49 CiteScore 4.49
  • SNIP value: 1.539 SNIP 1.539
  • SJR value: 2.404 SJR 2.404
  • IPP value: 4.28 IPP 4.28
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 51 Scimago H index 51
Volume 10, issue 12 | Copyright
Geosci. Model Dev., 10, 4743-4758, 2017
https://doi.org/10.5194/gmd-10-4743-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 4.0 License.

Development and technical paper 22 Dec 2017

Development and technical paper | 22 Dec 2017

A case study of aerosol data assimilation with the Community Multi-scale Air Quality Model over the contiguous United States using 3D-Var and optimal interpolation methods

Youhua Tang et al.
Viewed
Total article views: 952 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
620 304 28 952 28 39
  • HTML: 620
  • PDF: 304
  • XML: 28
  • Total: 952
  • BibTeX: 28
  • EndNote: 39
Views and downloads (calculated since 11 Jul 2017)
Cumulative views and downloads (calculated since 11 Jul 2017)
Viewed (geographical distribution)
Total article views: 952 (including HTML, PDF, and XML) Thereof 949 with geography defined and 3 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited
Saved (final revised paper)
No saved metrics found.
Saved (discussion paper)
No saved metrics found.
Discussed (final revised paper)
No discussed metrics found.
Discussed (discussion paper)
No discussed metrics found.
Latest update: 19 Oct 2018
Publications Copernicus
Download
Short summary
In order to evaluate the data assimilation tools for regional real-time PM2.5 forecasts, we applied a 3D-Var assimilation tool to adjust the aerosol initial condition by assimilating satellite-retrieved aerosol optical depth and surface PM2.5 observations for a regional air quality model, which is compared to another assimilation method, optimal interpolation. We discuss the pros and cons of these two assimilation methods based on the comparison of their 1-month four-cycles-per-day runs.
In order to evaluate the data assimilation tools for regional real-time PM2.5 forecasts, we...
Citation
Share