Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year 4.890
  • CiteScore value: 4.49 CiteScore 4.49
  • SNIP value: 1.539 SNIP 1.539
  • SJR value: 2.404 SJR 2.404
  • IPP value: 4.28 IPP 4.28
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 51 Scimago H index 51
Volume 10, issue 12 | Copyright
Geosci. Model Dev., 10, 4743-4758, 2017
https://doi.org/10.5194/gmd-10-4743-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 4.0 License.

Development and technical paper 22 Dec 2017

Development and technical paper | 22 Dec 2017

A case study of aerosol data assimilation with the Community Multi-scale Air Quality Model over the contiguous United States using 3D-Var and optimal interpolation methods

Youhua Tang et al.
Related authors
Evaluating a fire smoke simulation algorithm in the National Air Quality Forecast Capability (NAQFC) by using multiple observation data sets during the Southeast Nexus (SENEX) field campaign
Li Pan, Hyun Cheol Kim, Pius Lee, Rick Saylor, YouHua Tang, Daniel Tong, Barry Baker, Shobha Kondragunta, Chuanyu Xu, Mark G. Ruminski, Weiwei Chen, Jeff Mcqueen, and Ivanka Stajner
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2017-207,https://doi.org/10.5194/gmd-2017-207, 2017
Revised manuscript not accepted
Multi-year downscaling application of two-way coupled WRF v3.4 and CMAQ v5.0.2 over east Asia for regional climate and air quality modeling: model evaluation and aerosol direct effects
Chaopeng Hong, Qiang Zhang, Yang Zhang, Youhua Tang, Daniel Tong, and Kebin He
Geosci. Model Dev., 10, 2447-2470, https://doi.org/10.5194/gmd-10-2447-2017,https://doi.org/10.5194/gmd-10-2447-2017, 2017
The implementation of NEMS GFS Aerosol Component (NGAC) Version 1.0 for global dust forecasting at NOAA/NCEP
Cheng-Hsuan Lu, Arlindo da Silva, Jun Wang, Shrinivas Moorthi, Mian Chin, Peter Colarco, Youhua Tang, Partha S. Bhattacharjee, Shen-Po Chen, Hui-Ya Chuang, Hann-Ming Henry Juang, Jeffery McQueen, and Mark Iredell
Geosci. Model Dev., 9, 1905-1919, https://doi.org/10.5194/gmd-9-1905-2016,https://doi.org/10.5194/gmd-9-1905-2016, 2016
Toward enhanced capability for detecting and predicting dust events in the western United States: the Arizona case study
M. Huang, D. Tong, P. Lee, L. Pan, Y. Tang, I. Stajner, R. B. Pierce, J. McQueen, and J. Wang
Atmos. Chem. Phys., 15, 12595-12610, https://doi.org/10.5194/acp-15-12595-2015,https://doi.org/10.5194/acp-15-12595-2015, 2015
Evaluation of modeled surface ozone biases as a function of cloud cover fraction
H. C. Kim, P. Lee, F. Ngan, Y. Tang, H. L. Yoo, and L. Pan
Geosci. Model Dev., 8, 2959-2965, https://doi.org/10.5194/gmd-8-2959-2015,https://doi.org/10.5194/gmd-8-2959-2015, 2015
Related subject area
Atmospheric Sciences
MOPSMAP v1.0: a versatile tool for the modeling of aerosol optical properties
Josef Gasteiger and Matthias Wiegner
Geosci. Model Dev., 11, 2739-2762, https://doi.org/10.5194/gmd-11-2739-2018,https://doi.org/10.5194/gmd-11-2739-2018, 2018
An update on the RTTOV fast radiative transfer model (currently at version 12)
Roger Saunders, James Hocking, Emma Turner, Peter Rayer, David Rundle, Pascal Brunel, Jerome Vidot, Pascale Roquet, Marco Matricardi, Alan Geer, Niels Bormann, and Cristina Lupu
Geosci. Model Dev., 11, 2717-2737, https://doi.org/10.5194/gmd-11-2717-2018,https://doi.org/10.5194/gmd-11-2717-2018, 2018
GEM-MACH-PAH (rev2488): a new high-resolution chemical transport model for North American polycyclic aromatic hydrocarbons and benzene
Cynthia H. Whaley, Elisabeth Galarneau, Paul A. Makar, Ayodeji Akingunola, Wanmin Gong, Sylvie Gravel, Michael D. Moran, Craig Stroud, Junhua Zhang, and Qiong Zheng
Geosci. Model Dev., 11, 2609-2632, https://doi.org/10.5194/gmd-11-2609-2018,https://doi.org/10.5194/gmd-11-2609-2018, 2018
The Interactive Stratospheric Aerosol Model Intercomparison Project (ISA-MIP): motivation and experimental design
Claudia Timmreck, Graham W. Mann, Valentina Aquila, Rene Hommel, Lindsay A. Lee, Anja Schmidt, Christoph Brühl, Simon Carn, Mian Chin, Sandip S. Dhomse, Thomas Diehl, Jason M. English, Michael J. Mills, Ryan Neely, Jianxiong Sheng, Matthew Toohey, and Debra Weisenstein
Geosci. Model Dev., 11, 2581-2608, https://doi.org/10.5194/gmd-11-2581-2018,https://doi.org/10.5194/gmd-11-2581-2018, 2018
Observational operators for dual polarimetric radars in variational data assimilation systems (PolRad VAR v1.0)
Takuya Kawabata, Thomas Schwitalla, Ahoro Adachi, Hans-Stefan Bauer, Volker Wulfmeyer, Nobuhiro Nagumo, and Hiroshi Yamauchi
Geosci. Model Dev., 11, 2493-2501, https://doi.org/10.5194/gmd-11-2493-2018,https://doi.org/10.5194/gmd-11-2493-2018, 2018
Cited articles
Adhikary, B., Kulkarni, S., Dallura, A., Tang, Y., Chai, T., Leung, L. R., Qian, Y., Chung, C. E., Ramanathan, V., and Carmichael, G. R.: A regional scale chemical transport modeling of Asian aerosols with data assimilation of AOD observations using optimal interpolation technique, Atmos. Environ., 42, 8600–8615, 2008.
Appel, K. W., Roselle, S. J., Gilliam, R. C., and Pleim, J. E.: Sensitivity of the Community Multiscale Air Quality (CMAQ) model v4.7 results for the eastern United States to MM5 and WRF meteorological drivers, Geosci. Model Dev., 3, 169–188, https://doi.org/10.5194/gmd-3-169-2010, 2010.
Binkowski, F. S. and Roselle, S. J.: Models-3 Community Multiscale Air Quality (CMAQ) model aerosol component: 1. Model description, J. Geophys. Res., 108, 4183, https://doi.org/10.1029/2001JD001409, 2003.
Bocquet, M., Elbern, H., Eskes, H., Hirtl, M., Žabkar, R., Carmichael, G. R., Flemming, J., Inness, A., Pagowski, M., Pérez Camaño, J. L., Saide, P. E., San Jose, R., Sofiev, M., Vira, J., Baklanov, A., Carnevale, C., Grell, G., and Seigneur, C.: Data assimilation in atmospheric chemistry models: current status and future prospects for coupled chemistry meteorology models, Atmos. Chem. Phys., 15, 5325–5358, https://doi.org/10.5194/acp-15-5325-2015, 2015.
Chai, T., Carmichael, G. R., Sandu, A., Tang, Y., and Daescu, D. N.: Chemical data assimilation of Transport and Chemical Evolution over the Pacific (TRACE-P) aircraft measurements, J. Geophys. Res.-Atmos., 111, D02301, https://doi.org/10.1029/2005JD005883, 2006.
Publications Copernicus
Download
Short summary
In order to evaluate the data assimilation tools for regional real-time PM2.5 forecasts, we applied a 3D-Var assimilation tool to adjust the aerosol initial condition by assimilating satellite-retrieved aerosol optical depth and surface PM2.5 observations for a regional air quality model, which is compared to another assimilation method, optimal interpolation. We discuss the pros and cons of these two assimilation methods based on the comparison of their 1-month four-cycles-per-day runs.
In order to evaluate the data assimilation tools for regional real-time PM2.5 forecasts, we...
Citation
Share