Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year 4.890
  • CiteScore value: 4.49 CiteScore 4.49
  • SNIP value: 1.539 SNIP 1.539
  • SJR value: 2.404 SJR 2.404
  • IPP value: 4.28 IPP 4.28
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 51 Scimago H index 51
Volume 10, issue 12 | Copyright
Geosci. Model Dev., 10, 4743-4758, 2017
https://doi.org/10.5194/gmd-10-4743-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 4.0 License.

Development and technical paper 22 Dec 2017

Development and technical paper | 22 Dec 2017

A case study of aerosol data assimilation with the Community Multi-scale Air Quality Model over the contiguous United States using 3D-Var and optimal interpolation methods

Youhua Tang et al.
Related authors
Evaluating a fire smoke simulation algorithm in the National Air Quality Forecast Capability (NAQFC) by using multiple observation data sets during the Southeast Nexus (SENEX) field campaign
Li Pan, Hyun Cheol Kim, Pius Lee, Rick Saylor, YouHua Tang, Daniel Tong, Barry Baker, Shobha Kondragunta, Chuanyu Xu, Mark G. Ruminski, Weiwei Chen, Jeff Mcqueen, and Ivanka Stajner
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2017-207,https://doi.org/10.5194/gmd-2017-207, 2017
Revised manuscript not accepted
Multi-year downscaling application of two-way coupled WRF v3.4 and CMAQ v5.0.2 over east Asia for regional climate and air quality modeling: model evaluation and aerosol direct effects
Chaopeng Hong, Qiang Zhang, Yang Zhang, Youhua Tang, Daniel Tong, and Kebin He
Geosci. Model Dev., 10, 2447-2470, https://doi.org/10.5194/gmd-10-2447-2017,https://doi.org/10.5194/gmd-10-2447-2017, 2017
The implementation of NEMS GFS Aerosol Component (NGAC) Version 1.0 for global dust forecasting at NOAA/NCEP
Cheng-Hsuan Lu, Arlindo da Silva, Jun Wang, Shrinivas Moorthi, Mian Chin, Peter Colarco, Youhua Tang, Partha S. Bhattacharjee, Shen-Po Chen, Hui-Ya Chuang, Hann-Ming Henry Juang, Jeffery McQueen, and Mark Iredell
Geosci. Model Dev., 9, 1905-1919, https://doi.org/10.5194/gmd-9-1905-2016,https://doi.org/10.5194/gmd-9-1905-2016, 2016
Toward enhanced capability for detecting and predicting dust events in the western United States: the Arizona case study
M. Huang, D. Tong, P. Lee, L. Pan, Y. Tang, I. Stajner, R. B. Pierce, J. McQueen, and J. Wang
Atmos. Chem. Phys., 15, 12595-12610, https://doi.org/10.5194/acp-15-12595-2015,https://doi.org/10.5194/acp-15-12595-2015, 2015
Evaluation of modeled surface ozone biases as a function of cloud cover fraction
H. C. Kim, P. Lee, F. Ngan, Y. Tang, H. L. Yoo, and L. Pan
Geosci. Model Dev., 8, 2959-2965, https://doi.org/10.5194/gmd-8-2959-2015,https://doi.org/10.5194/gmd-8-2959-2015, 2015
Related subject area
Atmospheric Sciences
Development and implementation of a new biomass burning emissions injection height scheme (BBEIH v1.0) for the GEOS-Chem model (v9-01-01)
Liye Zhu, Maria Val Martin, Luciana V. Gatti, Ralph Kahn, Arsineh Hecobian, and Emily V. Fischer
Geosci. Model Dev., 11, 4103-4116, https://doi.org/10.5194/gmd-11-4103-2018,https://doi.org/10.5194/gmd-11-4103-2018, 2018
Comparison of dealiasing schemes in large-eddy simulation of neutrally stratified atmospheric flows
Fabien Margairaz, Marco G. Giometto, Marc B. Parlange, and Marc Calaf
Geosci. Model Dev., 11, 4069-4084, https://doi.org/10.5194/gmd-11-4069-2018,https://doi.org/10.5194/gmd-11-4069-2018, 2018
ICON-ART 2.1: a flexible tracer framework and its application for composition studies in numerical weather forecasting and climate simulations
Jennifer Schröter, Daniel Rieger, Christian Stassen, Heike Vogel, Michael Weimer, Sven Werchner, Jochen Förstner, Florian Prill, Daniel Reinert, Günther Zängl, Marco Giorgetta, Roland Ruhnke, Bernhard Vogel, and Peter Braesicke
Geosci. Model Dev., 11, 4043-4068, https://doi.org/10.5194/gmd-11-4043-2018,https://doi.org/10.5194/gmd-11-4043-2018, 2018
Implementation of a comprehensive ice crystal formation parameterization for cirrus and mixed-phase clouds in the EMAC model (based on MESSy 2.53)
Sara Bacer, Sylvia C. Sullivan, Vlassis A. Karydis, Donifan Barahona, Martina Krämer, Athanasios Nenes, Holger Tost, Alexandra P. Tsimpidi, Jos Lelieveld, and Andrea Pozzer
Geosci. Model Dev., 11, 4021-4041, https://doi.org/10.5194/gmd-11-4021-2018,https://doi.org/10.5194/gmd-11-4021-2018, 2018
Improving collisional growth in Lagrangian cloud models: development and verification of a new splitting algorithm
Johannes Schwenkel, Fabian Hoffmann, and Siegfried Raasch
Geosci. Model Dev., 11, 3929-3944, https://doi.org/10.5194/gmd-11-3929-2018,https://doi.org/10.5194/gmd-11-3929-2018, 2018
Cited articles
Adhikary, B., Kulkarni, S., Dallura, A., Tang, Y., Chai, T., Leung, L. R., Qian, Y., Chung, C. E., Ramanathan, V., and Carmichael, G. R.: A regional scale chemical transport modeling of Asian aerosols with data assimilation of AOD observations using optimal interpolation technique, Atmos. Environ., 42, 8600–8615, 2008.
Appel, K. W., Roselle, S. J., Gilliam, R. C., and Pleim, J. E.: Sensitivity of the Community Multiscale Air Quality (CMAQ) model v4.7 results for the eastern United States to MM5 and WRF meteorological drivers, Geosci. Model Dev., 3, 169–188, https://doi.org/10.5194/gmd-3-169-2010, 2010.
Binkowski, F. S. and Roselle, S. J.: Models-3 Community Multiscale Air Quality (CMAQ) model aerosol component: 1. Model description, J. Geophys. Res., 108, 4183, https://doi.org/10.1029/2001JD001409, 2003.
Bocquet, M., Elbern, H., Eskes, H., Hirtl, M., Žabkar, R., Carmichael, G. R., Flemming, J., Inness, A., Pagowski, M., Pérez Camaño, J. L., Saide, P. E., San Jose, R., Sofiev, M., Vira, J., Baklanov, A., Carnevale, C., Grell, G., and Seigneur, C.: Data assimilation in atmospheric chemistry models: current status and future prospects for coupled chemistry meteorology models, Atmos. Chem. Phys., 15, 5325–5358, https://doi.org/10.5194/acp-15-5325-2015, 2015.
Chai, T., Carmichael, G. R., Sandu, A., Tang, Y., and Daescu, D. N.: Chemical data assimilation of Transport and Chemical Evolution over the Pacific (TRACE-P) aircraft measurements, J. Geophys. Res.-Atmos., 111, D02301, https://doi.org/10.1029/2005JD005883, 2006.
Publications Copernicus
Download
Short summary
In order to evaluate the data assimilation tools for regional real-time PM2.5 forecasts, we applied a 3D-Var assimilation tool to adjust the aerosol initial condition by assimilating satellite-retrieved aerosol optical depth and surface PM2.5 observations for a regional air quality model, which is compared to another assimilation method, optimal interpolation. We discuss the pros and cons of these two assimilation methods based on the comparison of their 1-month four-cycles-per-day runs.
In order to evaluate the data assimilation tools for regional real-time PM2.5 forecasts, we...
Citation
Share