Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year 4.890
  • CiteScore value: 4.49 CiteScore 4.49
  • SNIP value: 1.539 SNIP 1.539
  • SJR value: 2.404 SJR 2.404
  • IPP value: 4.28 IPP 4.28
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 51 Scimago H index 51
Volume 11, issue 1 | Copyright
Geosci. Model Dev., 11, 1-42, 2018
https://doi.org/10.5194/gmd-11-1-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.

Model description paper 03 Jan 2018

Model description paper | 03 Jan 2018

The UKC2 regional coupled environmental prediction system

Huw W. Lewis et al.
Related authors
Research priorities in support of ocean monitoring and forecasting at the Met Office
J. R. Siddorn, S. A. Good, C. M. Harris, H. W. Lewis, J. Maksymczuk, M. J. Martin, and A. Saulter
Ocean Sci., 12, 217-231, https://doi.org/10.5194/os-12-217-2016,https://doi.org/10.5194/os-12-217-2016, 2016
The Radio Occultation Processing Package, ROPP
I. D. Culverwell, H. W. Lewis, D. Offiler, C. Marquardt, and C. P. Burrows
Atmos. Meas. Tech., 8, 1887-1899, https://doi.org/10.5194/amt-8-1887-2015,https://doi.org/10.5194/amt-8-1887-2015, 2015
Related subject area
Atmospheric Sciences
Adding four-dimensional data assimilation by analysis nudging to the Model for Prediction Across Scales – Atmosphere (version 4.0)
Orren Russell Bullock Jr., Hosein Foroutan, Robert C. Gilliam, and Jerold A. Herwehe
Geosci. Model Dev., 11, 2897-2922, https://doi.org/10.5194/gmd-11-2897-2018,https://doi.org/10.5194/gmd-11-2897-2018, 2018
Simulating atmospheric tracer concentrations for spatially distributed receptors: updates to the Stochastic Time-Inverted Lagrangian Transport model's R interface (STILT-R version 2)
Benjamin Fasoli, John C. Lin, David R. Bowling, Logan Mitchell, and Daniel Mendoza
Geosci. Model Dev., 11, 2813-2824, https://doi.org/10.5194/gmd-11-2813-2018,https://doi.org/10.5194/gmd-11-2813-2018, 2018
TOAST 1.0: Tropospheric Ozone Attribution of Sources with Tagging for CESM 1.2.2
Tim Butler, Aurelia Lupascu, Jane Coates, and Shuai Zhu
Geosci. Model Dev., 11, 2825-2840, https://doi.org/10.5194/gmd-11-2825-2018,https://doi.org/10.5194/gmd-11-2825-2018, 2018
MOPSMAP v1.0: a versatile tool for the modeling of aerosol optical properties
Josef Gasteiger and Matthias Wiegner
Geosci. Model Dev., 11, 2739-2762, https://doi.org/10.5194/gmd-11-2739-2018,https://doi.org/10.5194/gmd-11-2739-2018, 2018
An update on the RTTOV fast radiative transfer model (currently at version 12)
Roger Saunders, James Hocking, Emma Turner, Peter Rayer, David Rundle, Pascal Brunel, Jerome Vidot, Pascale Roquet, Marco Matricardi, Alan Geer, Niels Bormann, and Cristina Lupu
Geosci. Model Dev., 11, 2717-2737, https://doi.org/10.5194/gmd-11-2717-2018,https://doi.org/10.5194/gmd-11-2717-2018, 2018
Cited articles
Arakawa, A. and Lamb, V. R.: Computational design of the basic dynamic processes of the UCLA general circulation model, Methods Comput. Phys., 17, 173–265, 1977.
Ardhuin, F., Rogers, E., Babanin, A. V., Filipot, J.-F., Magne, R., Roland, A., van der Westhuysen, A., Queffeulou, P., Lefevre, J.-M., Aouf, L., and Collard, F.: Semiempirical Dissipation Source Functions for Ocean Waves. Part I: Definition, Calibration, and Validation, J. Phys. Oceanogr., 40, 1917–1941, https://doi.org/10.1175/2010JPO4324.1, 2010.
Batstone, C., Lawless, M., Tawn, J., Horsburgh, K., Blackman, D., McMillan, A., Worth, D., Laeger, S., and Hunt, T.: A UK best-practice approach for extreme sea level analysis along complex topographic coastlines, Ocean Eng., 71, 28–39, https://doi.org/10.1016/j.oceaneng.2013.02.003, 2013.
Beljaars, A. C. M. and Holtslag, A. A. M.: Flux parametrization over land surfaces for atmospheric models, J. Appl. Meteorol., 30, 327–341, https://doi.org/10.1175/1520-0450(1991)030<0327:FPOLSF>2.0.CO;2, 1991.
Bell, V. A., Kay, A. L., Jones, R. G., and Moore, R. J.: Development of a high resolution grid-based river flow model for use with regional climate model output, Hydrol. Earth Syst. Sci., 11, 532–549, https://doi.org/10.5194/hess-11-532-2007, 2007.
Publications Copernicus
Download
Short summary
In the real world the atmosphere, oceans and land surface are closely interconnected, and yet prediction systems tend to treat them in isolation. Those feedbacks are often illustrated in natural hazards, such as when strong winds lead to large waves and coastal damage, or when prolonged rainfall leads to saturated ground and high flowing rivers. For the first time, we have attempted to represent some of the feedbacks between sky, sea and land within a high-resolution forecast system for the UK.
In the real world the atmosphere, oceans and land surface are closely interconnected, and yet...
Citation
Share