Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year 4.890
  • CiteScore value: 4.49 CiteScore 4.49
  • SNIP value: 1.539 SNIP 1.539
  • SJR value: 2.404 SJR 2.404
  • IPP value: 4.28 IPP 4.28
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 51 Scimago H index 51
Volume 11, issue 1 | Copyright
Geosci. Model Dev., 11, 1-42, 2018
https://doi.org/10.5194/gmd-11-1-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.

Model description paper 03 Jan 2018

Model description paper | 03 Jan 2018

The UKC2 regional coupled environmental prediction system

Huw W. Lewis et al.
Related authors
The UKC3 regional coupled environmental prediction system
Huw W. Lewis, Juan Manuel Castillo Sanchez, Alex Arnold, Joachim Fallmann, Andrew Saulter, Jennifer Graham, Mike Bush, John Siddorn, Tamzin Palmer, Adrian Lock, John Edwards, Lucy Bricheno, Alberto Martínez de la Torre, and James Clark
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-245,https://doi.org/10.5194/gmd-2018-245, 2018
Manuscript under review for GMD
Research priorities in support of ocean monitoring and forecasting at the Met Office
J. R. Siddorn, S. A. Good, C. M. Harris, H. W. Lewis, J. Maksymczuk, M. J. Martin, and A. Saulter
Ocean Sci., 12, 217-231, https://doi.org/10.5194/os-12-217-2016,https://doi.org/10.5194/os-12-217-2016, 2016
The Radio Occultation Processing Package, ROPP
I. D. Culverwell, H. W. Lewis, D. Offiler, C. Marquardt, and C. P. Burrows
Atmos. Meas. Tech., 8, 1887-1899, https://doi.org/10.5194/amt-8-1887-2015,https://doi.org/10.5194/amt-8-1887-2015, 2015
Related subject area
Atmospheric Sciences
ICON-ART 2.1: a flexible tracer framework and its application for composition studies in numerical weather forecasting and climate simulations
Jennifer Schröter, Daniel Rieger, Christian Stassen, Heike Vogel, Michael Weimer, Sven Werchner, Jochen Förstner, Florian Prill, Daniel Reinert, Günther Zängl, Marco Giorgetta, Roland Ruhnke, Bernhard Vogel, and Peter Braesicke
Geosci. Model Dev., 11, 4043-4068, https://doi.org/10.5194/gmd-11-4043-2018,https://doi.org/10.5194/gmd-11-4043-2018, 2018
Implementation of a comprehensive ice crystal formation parameterization for cirrus and mixed-phase clouds in the EMAC model (based on MESSy 2.53)
Sara Bacer, Sylvia C. Sullivan, Vlassis A. Karydis, Donifan Barahona, Martina Krämer, Athanasios Nenes, Holger Tost, Alexandra P. Tsimpidi, Jos Lelieveld, and Andrea Pozzer
Geosci. Model Dev., 11, 4021-4041, https://doi.org/10.5194/gmd-11-4021-2018,https://doi.org/10.5194/gmd-11-4021-2018, 2018
Improving collisional growth in Lagrangian cloud models: development and verification of a new splitting algorithm
Johannes Schwenkel, Fabian Hoffmann, and Siegfried Raasch
Geosci. Model Dev., 11, 3929-3944, https://doi.org/10.5194/gmd-11-3929-2018,https://doi.org/10.5194/gmd-11-3929-2018, 2018
SALSA2.0: The sectional aerosol module of the aerosol–chemistry–climate model ECHAM6.3.0-HAM2.3-MOZ1.0
Harri Kokkola, Thomas Kühn, Anton Laakso, Tommi Bergman, Kari E. J. Lehtinen, Tero Mielonen, Antti Arola, Scarlet Stadtler, Hannele Korhonen, Sylvaine Ferrachat, Ulrike Lohmann, David Neubauer, Ina Tegen, Colombe Siegenthaler-Le Drian, Martin G. Schultz, Isabelle Bey, Philip Stier, Nikos Daskalakis, Colette L. Heald, and Sami Romakkaniemi
Geosci. Model Dev., 11, 3833-3863, https://doi.org/10.5194/gmd-11-3833-2018,https://doi.org/10.5194/gmd-11-3833-2018, 2018
Evaluation of ECMWF-IFS (version 41R1) operational model forecasts of aerosol transport by using ceilometer network measurements
Ka Lok Chan, Matthias Wiegner, Harald Flentje, Ina Mattis, Frank Wagner, Josef Gasteiger, and Alexander Geiß
Geosci. Model Dev., 11, 3807-3831, https://doi.org/10.5194/gmd-11-3807-2018,https://doi.org/10.5194/gmd-11-3807-2018, 2018
Cited articles
Arakawa, A. and Lamb, V. R.: Computational design of the basic dynamic processes of the UCLA general circulation model, Methods Comput. Phys., 17, 173–265, 1977.
Ardhuin, F., Rogers, E., Babanin, A. V., Filipot, J.-F., Magne, R., Roland, A., van der Westhuysen, A., Queffeulou, P., Lefevre, J.-M., Aouf, L., and Collard, F.: Semiempirical Dissipation Source Functions for Ocean Waves. Part I: Definition, Calibration, and Validation, J. Phys. Oceanogr., 40, 1917–1941, https://doi.org/10.1175/2010JPO4324.1, 2010.
Batstone, C., Lawless, M., Tawn, J., Horsburgh, K., Blackman, D., McMillan, A., Worth, D., Laeger, S., and Hunt, T.: A UK best-practice approach for extreme sea level analysis along complex topographic coastlines, Ocean Eng., 71, 28–39, https://doi.org/10.1016/j.oceaneng.2013.02.003, 2013.
Beljaars, A. C. M. and Holtslag, A. A. M.: Flux parametrization over land surfaces for atmospheric models, J. Appl. Meteorol., 30, 327–341, https://doi.org/10.1175/1520-0450(1991)030<0327:FPOLSF>2.0.CO;2, 1991.
Bell, V. A., Kay, A. L., Jones, R. G., and Moore, R. J.: Development of a high resolution grid-based river flow model for use with regional climate model output, Hydrol. Earth Syst. Sci., 11, 532–549, https://doi.org/10.5194/hess-11-532-2007, 2007.
Publications Copernicus
Download
Short summary
In the real world the atmosphere, oceans and land surface are closely interconnected, and yet prediction systems tend to treat them in isolation. Those feedbacks are often illustrated in natural hazards, such as when strong winds lead to large waves and coastal damage, or when prolonged rainfall leads to saturated ground and high flowing rivers. For the first time, we have attempted to represent some of the feedbacks between sky, sea and land within a high-resolution forecast system for the UK.
In the real world the atmosphere, oceans and land surface are closely interconnected, and yet...
Citation
Share