Supplement of

Modeling canopy-induced turbulence in the Earth system: a unified parameterization of turbulent exchange within plant canopies and the roughness sublayer (CLM-ml v0)

Gordon B. Bonan et al.

Correspondence to: Gordon B. Bonan (bonan@ucar.edu)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.
S1 Numerical solution of Eqs. (16) and (17)

Richtmyer and Morton (1967, pp. 275–278) provide a numerical solution for Eqs. (16) and (17), common to that used for tridiagonal equations. These equations are

\begin{align*}
a_{i,j} \theta_{i-1}^{n+1} + b_{1i,j} \theta_{i}^{n+1} + b_{12,i} q_{i}^{n+1} + c_{1,i} \theta_{i+1}^{n+1} &= d_{i,j} \\ a_{2,i} q_{i-1}^{n+1} + b_{21,i} \theta_{i}^{n+1} + b_{22,i} q_{i}^{n+1} + c_{2,i} q_{i+1}^{n+1} &= d_{2,i}
\end{align*}

(S1) (S2)

The solution involves rewriting these in the form

\begin{align*}
\theta_{i}^{n+1} &= f_{i,j} - e_{1i,j} \theta_{i+1}^{n+1} - e_{12,i} q_{i}^{n+1} \\
q_{i}^{n+1} &= f_{2,i} - e_{21,i} \theta_{i+1}^{n+1} - e_{22,i} q_{i+1}^{n+1}
\end{align*}

(S3) (S4)

Here, \(e \) is a \(2 \times 2 \) matrix at each level \(i \), and \(f \) is a \(2 \times 1 \) matrix at each level. These are found by substituting

\begin{align*}
\theta_{i}^{n+1} &= f_{i,j} - e_{1i,j} \theta_{i+1}^{n+1} - e_{12,i} q_{i}^{n+1} \\
q_{i}^{n+1} &= f_{2,i} - e_{21,i} \theta_{i+1}^{n+1} - e_{22,i} q_{i+1}^{n+1}
\end{align*}

(S5) (S6)

into Eqs. (S1) and (S2) to eliminate \(\theta_{i-1}^{n+1} \) and \(q_{i-1}^{n+1} \), and then substituting the resulting equation for \(\theta_{i}^{n+1} \) into that for \(q_{i}^{n+1} \) and vice versa. This gives

\begin{align*}
e_{11,i} &= c_{i,j} \left(b_{22,i} - a_{2,i} e_{22,i-1} \right) / \det \\
e_{12,i} &= -c_{2,i} \left(b_{12,i} - a_{1,i} e_{12,i-1} \right) / \det \\
e_{21,i} &= -c_{i,j} \left(b_{21,i} - a_{2,i} e_{21,i-1} \right) / \det \\
e_{22,i} &= c_{2,i} \left(b_{11,i} - a_{1,i} e_{11,i-1} \right) / \det
\end{align*}

(S7)

and
\[f_{1,j} = \frac{(b_{22,j} - a_{2,j}e_{22,j-1})(d_{1,j} - a_{1,j}f_{1,j-1}) - (b_{12,j} - a_{1,j}e_{12,j-1})(d_{2,j} - a_{2,j}f_{2,j-1})}{\text{det}} \]
\[f_{2,j} = \frac{-(b_{21,j} - a_{2,j}e_{21,j-1})(d_{1,j} - a_{1,j}f_{1,j-1}) + (b_{11,j} - a_{1,j}e_{11,j-1})(d_{2,j} - a_{2,j}f_{2,j-1})}{\text{det}} \]
(S8)

with

\[\text{det} = (b_{11,j} - a_{1,j}e_{11,j-1})(b_{22,j} - a_{2,j}e_{22,j-1}) - (b_{12,j} - a_{1,j}e_{12,j-1})(b_{21,j} - a_{2,j}e_{21,j-1}) \]
(S9)

The \(e \) and \(f \) matrices are found sequentially upward through the canopy from \(i = 1 \) to \(N \) with
\[e_{1,0} = e_{2,0} = e_{12,0} = e_{22,0} = 0 \] and \(f_{1,0} = f_{2,0} = 0 \). Then, \(\theta_i^{n+1} \) and \(q_i^{n+1} \) are calculated downward through the canopy from \(i = N - 1 \) to 1 using Eqs. (S3) and (S4) with \(\theta_N^{n+1} = f_{1,N} \) and \(q_N^{n+1} = f_{2,N} \).

S2 Algebraic coefficients for Eqs. (16) and (17)

In the equations that follow, \(g_{\text{sun}}^{\text{sun}} = 2 \bar{g}_{b,j} \Delta L_{\text{sun},i} \) and \(g_{\text{sha}}^{\text{sha}} = 2 \bar{g}_{b,j} \Delta L_{\text{sha},i} \) are sunlit and shaded leaf conductances for sensible heat scaled to the canopy. \(g_{\text{sun}}^{\text{sun}} = g_{\text{sun},i} \Delta L_{\text{sun},i} \) and \(g_{\text{sha}}^{\text{sha}} = g_{\text{sha},i} \Delta L_{\text{sha},i} \) are similar conductances for evapotranspiration. The coefficients in Eqs. (16) and (17) are

\[a_{i,j} = -g_{a,j-1} \]
(S10)

\[b_{1,i} = \frac{\rho_m \Delta z_i}{\Delta t} + g_{a,i-1} + g_{a,i} + g_{\text{sun}}^{\text{sun}}(1-\alpha_i^{\text{sun}}) + g_{\text{sha}}^{\text{sha}}(1-\alpha_i^{\text{sha}}) \]
(S11)

\[b_{2,i} = -g_{H,i}^{\text{sun}} \rho_i^{\text{sun}} - g_{H,i}^{\text{sha}} \rho_i^{\text{sha}} \]
(S12)

\[c_{i,j} = -g_{a,i} \]
(S13)

\[d_{i,j} = \frac{\rho_m \Delta z_i}{\Delta t} \theta_i^n + g_{H,i}^{\text{sun}} \theta_i^{\text{sun}} + g_{H,i}^{\text{sha}} \theta_i^{\text{sha}} \]
(S14)

for temperature, and

\[a_{2,j} = -g_{a,j-1} \]
(S15)
\[b_{21,j} = -g_{E,j} \gamma_i \alpha_i^{\text{sun}} - g_{E,j} \gamma_i \alpha_i^{\text{sha}} \]
\[(S16) \]

\[b_{22,j} = \frac{\rho_m \Delta z_i}{\Delta t} + g_{a,i-1} + g_{a,j} + g_{E,j}^\text{sun} \left(1 - s_i^{\text{sun}} \beta_i^{\text{sun}}\right) + g_{E,j}^\text{sha} \left(1 - s_i^{\text{sha}} \beta_i^{\text{sha}}\right) \]
\[(S17) \]

\[c_{2,j} = -g_{a,j} \]
\[(S18) \]

\[d_{2,j} = \frac{\rho_m \Delta z_i}{\Delta t} q_i^n + g_{E,j}^\text{sun} \left[q_{\text{sat}} \left(T^n_{(\text{sun},i)}\right) + s_i^{\text{sun}} \left(\delta_i^{\text{sun}} - T^n_{(\text{sun},i)}\right)\right] + g_{E,j}^\text{sha} \left[q_{\text{sat}} \left(T^n_{(\text{sha},i)}\right) + s_i^{\text{sha}} \left(\delta_i^{\text{sha}} - T^n_{(\text{sha},i)}\right)\right] \]
\[(S19) \]

for water vapor.

Special boundary conditions are needed at the top layer \(i = N \), where \(\theta_{i+1}^{n+1} = \theta_{\text{ref}}^{n+1} \) and \(q_{i+1}^{n+1} = q_{\text{ref}}^{n+1} \) so that

\[c_{1,i} = 0 \]
\[(S20) \]

\[d_{1,i} = \frac{\rho_m \Delta z_i}{\Delta t} \theta_i^n + g_{H,i}^\text{sun} \delta_i^{\text{sun}} + g_{H,i}^\text{sha} \delta_i^{\text{sha}} + g_{a,i} \theta_{\text{ref}}^{n+1} \]
\[(S21) \]

\[c_{2,j} = 0 \]
\[(S22) \]

\[d_{2,j} = \frac{\rho_m \Delta z_i}{\Delta t} q_i^n + g_{E,j}^\text{sun} \left[q_{\text{sat}} \left(T^n_{(\text{sun},i)}\right) + s_i^{\text{sun}} \left(\delta_i^{\text{sun}} - T^n_{(\text{sun},i)}\right)\right] + g_{E,j}^\text{sha} \left[q_{\text{sat}} \left(T^n_{(\text{sha},i)}\right) + s_i^{\text{sha}} \left(\delta_i^{\text{sha}} - T^n_{(\text{sha},i)}\right)\right] + g_{a,j} q_{\text{ref}}^{n+1} \]
\[(S23) \]

and other terms are as given before.

Special boundary conditions are also needed for the first layer \(i = 1 \), where \(\theta_{i-1}^{n+1} = T_{0}^{n+1} \) and \(q_{i-1}^{n+1} = q_{0}^{n+1} \) are the ground surface temperature and water vapor concentration, respectively, so that

\[a_{1,i} = 0 \]
\[(S24) \]

\[b_{11,j} = \frac{\rho_m \Delta z_i}{\Delta t} + g_{a,i-1} + g_{a,i} + g_{H,i}^\text{sun} \left(1 - \alpha_i^{\text{sun}}\right) + g_{H,i}^\text{sha} \left(1 - \alpha_i^{\text{sha}}\right) - g_{a,i-1} \alpha_0 \]
\[(S25) \]
\[b_{12,i} = -g_{H,i}^{\text{sun}} \beta_{i}^{\text{sun}} - g_{H,i}^{\text{sha}} \beta_{i}^{\text{sha}} - g_{a,i-1} \beta_{0} \]
\((S26) \)

\[d_{1,i} = \frac{\rho_{m}\Delta z_{i}}{\Delta t} \theta_{i}^{n} + g_{H,i}^{\text{sun}} \delta_{i}^{\text{sun}} + g_{H,i}^{\text{sha}} \delta_{i}^{\text{sha}} + g_{a,i-1} \delta_{0} \]
\((S27) \)

\[a_{2,i} = 0 \]
\((S28) \)

\[b_{21,i} = -g_{E,i}^{\text{sun}} \alpha_{i}^{\text{sun}} - g_{E,i}^{\text{sha}} \alpha_{i}^{\text{sha}} - h_{s0}s_{0}g_{s0} \alpha_{0} \]
\((S29) \)

\[b_{22,i} = \frac{\rho_{m}\Delta z_{i}}{\Delta t} + g_{a,i} + g_{E,i}^{\text{sun}} \left(1-s_{i}^{\text{sun}} \beta_{i}^{\text{sun}} \right) + g_{E,i}^{\text{sha}} \left(1-s_{i}^{\text{sha}} \beta_{i}^{\text{sha}} \right) - h_{s0}s_{0}g_{s0} \beta_{0} \]
\((S30) \)

\[d_{2,i} = \frac{\rho_{m}\Delta z_{i}}{\Delta t} q_{i}^{n} + g_{E,i}^{\text{sun}} \left[q_{\text{sat}}^{n} \left(T_{\text{sun},i}^{n} \right) + s_{i}^{\text{sun}} \left(\delta_{i}^{\text{sun}} - T_{\text{sun},i}^{n} \right) \right] + g_{E,i}^{\text{sha}} \left[q_{\text{sat}}^{n} \left(T_{\text{sha},i}^{n} \right) + s_{i}^{\text{sha}} \left(\delta_{i}^{\text{sha}} - T_{\text{sha},i}^{n} \right) \right] \]
\(+ h_{s0} \left[q_{\text{sat}}^{0} \left(T_{0}^{0} \right) + s_{0} \left(\delta_{0} - T_{0}^{0} \right) \right] g_{s0} \)
\((S31) \)

and other terms are as given before.