Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year 4.890
  • CiteScore value: 4.49 CiteScore 4.49
  • SNIP value: 1.539 SNIP 1.539
  • SJR value: 2.404 SJR 2.404
  • IPP value: 4.28 IPP 4.28
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 51 Scimago H index 51
Volume 11, issue 1
Geosci. Model Dev., 11, 195-212, 2018
https://doi.org/10.5194/gmd-11-195-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Geosci. Model Dev., 11, 195-212, 2018
https://doi.org/10.5194/gmd-11-195-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Methods for assessment of models 17 Jan 2018

Methods for assessment of models | 17 Jan 2018

On the predictability of land surface fluxes from meteorological variables

Ned Haughton et al.
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Peer review completion
AR: Author's response | RR: Referee report | ED: Editor decision
AR by Ned Haughton on behalf of the Authors (10 Oct 2017)  Author's response    Manuscript
ED: Referee Nomination & Report Request started (17 Oct 2017) by Chiel van Heerwaarden
RR by Anonymous Referee #1 (14 Nov 2017)
ED: Publish subject to minor revisions (review by editor) (14 Nov 2017) by Chiel van Heerwaarden
AR by Ned Haughton on behalf of the Authors (24 Nov 2017)  Author's response    Manuscript
ED: Publish as is (24 Nov 2017) by Chiel van Heerwaarden
Publications Copernicus
Download
Short summary
Previous studies indicate that fluxes of heat, water, and carbon between the land surface and atmosphere are substantially more predictable than the performance of the current crop of land surface models would indicate. This study uses simple empirical models to estimate the amount of useful information in meteorological forcings that is available for predicting land surface fluxes. These models can be used as benchmarks for land surface models and may help identify areas ripe for improvement.
Previous studies indicate that fluxes of heat, water, and carbon between the land surface and...
Citation
Share