Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year
    4.890
  • CiteScore value: 4.49 CiteScore
    4.49
  • SNIP value: 1.539 SNIP 1.539
  • SJR value: 2.404 SJR 2.404
  • IPP value: 4.28 IPP 4.28
  • h5-index value: 40 h5-index 40
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 51 Scimago H
    index 51
Volume 11, issue 1
Geosci. Model Dev., 11, 195-212, 2018
https://doi.org/10.5194/gmd-11-195-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Geosci. Model Dev., 11, 195-212, 2018
https://doi.org/10.5194/gmd-11-195-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Methods for assessment of models 17 Jan 2018

Methods for assessment of models | 17 Jan 2018

On the predictability of land surface fluxes from meteorological variables

Ned Haughton et al.
Related authors  
Does predictability of fluxes vary between FLUXNET sites?
Ned Haughton, Gab Abramowitz, Martin G. De Kauwe, and Andy J. Pitman
Biogeosciences, 15, 4495-4513, https://doi.org/10.5194/bg-15-4495-2018,https://doi.org/10.5194/bg-15-4495-2018, 2018
Short summary
FluxnetLSM R package (v1.0): a community tool for processing FLUXNET data for use in land surface modelling
Anna M. Ukkola, Ned Haughton, Martin G. De Kauwe, Gab Abramowitz, and Andy J. Pitman
Geosci. Model Dev., 10, 3379-3390, https://doi.org/10.5194/gmd-10-3379-2017,https://doi.org/10.5194/gmd-10-3379-2017, 2017
Short summary
Related subject area  
Climate and Earth System Modeling
The Cloud_cci simulator v1.0 for the Cloud_cci climate data record and its application to a global and a regional climate model
Salomon Eliasson, Karl Göran Karlsson, Erik van Meijgaard, Jan Fokke Meirink, Martin Stengel, and Ulrika Willén
Geosci. Model Dev., 12, 829-847, https://doi.org/10.5194/gmd-12-829-2019,https://doi.org/10.5194/gmd-12-829-2019, 2019
Short summary
The Air-temperature Response to Green/blue-infrastructure Evaluation Tool (TARGET v1.0): an efficient and user-friendly model of city cooling
Ashley M. Broadbent, Andrew M. Coutts, Kerry A. Nice, Matthias Demuzere, E. Scott Krayenhoff, Nigel J. Tapper, and Hendrik Wouters
Geosci. Model Dev., 12, 785-803, https://doi.org/10.5194/gmd-12-785-2019,https://doi.org/10.5194/gmd-12-785-2019, 2019
Short summary
GCAM v5.1: representing the linkages between energy, water, land, climate, and economic systems
Katherine Calvin, Pralit Patel, Leon Clarke, Ghassem Asrar, Ben Bond-Lamberty, Ryna Yiyun Cui, Alan Di Vittorio, Kalyn Dorheim, Jae Edmonds, Corinne Hartin, Mohamad Hejazi, Russell Horowitz, Gokul Iyer, Page Kyle, Sonny Kim, Robert Link, Haewon McJeon, Steven J. Smith, Abigail Snyder, Stephanie Waldhoff, and Marshall Wise
Geosci. Model Dev., 12, 677-698, https://doi.org/10.5194/gmd-12-677-2019,https://doi.org/10.5194/gmd-12-677-2019, 2019
Short summary
Limitations of the 1 % experiment as the benchmark idealized experiment for carbon cycle intercomparison in C4MIP
Andrew Hugh MacDougall
Geosci. Model Dev., 12, 597-611, https://doi.org/10.5194/gmd-12-597-2019,https://doi.org/10.5194/gmd-12-597-2019, 2019
Short summary
Computing climate-smart urban land use with the Integrated Urban Complexity model (IUCm 1.0)
Roger Cremades and Philipp S. Sommer
Geosci. Model Dev., 12, 525-539, https://doi.org/10.5194/gmd-12-525-2019,https://doi.org/10.5194/gmd-12-525-2019, 2019
Short summary
Cited articles  
Abramowitz, G.: Calibration, compensating errors and data-based realism in LSMs, Presentation, 2013.
Abramowitz, G., Leuning, R., Clark, M., and Pitman, A. J.: Evaluating the performance of land surface models, 21, 5468–5481, https://doi.org/10.1175/2008JCLI2378.1, 2010.
Batty, M. and Torrens, P. M.: Modeling complexity: the limits to prediction, Cybergeo Eur. J. Geogr., https://doi.org/10.4000/cybergeo.1035, 2001.
Publications Copernicus
Download
Short summary
Previous studies indicate that fluxes of heat, water, and carbon between the land surface and atmosphere are substantially more predictable than the performance of the current crop of land surface models would indicate. This study uses simple empirical models to estimate the amount of useful information in meteorological forcings that is available for predicting land surface fluxes. These models can be used as benchmarks for land surface models and may help identify areas ripe for improvement.
Previous studies indicate that fluxes of heat, water, and carbon between the land surface and...
Citation