Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.154 IF 5.154
  • IF 5-year value: 5.697 IF 5-year
    5.697
  • CiteScore value: 5.56 CiteScore
    5.56
  • SNIP value: 1.761 SNIP 1.761
  • IPP value: 5.30 IPP 5.30
  • SJR value: 3.164 SJR 3.164
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 59 Scimago H
    index 59
  • h5-index value: 49 h5-index 49
GMD | Articles | Volume 11, issue 6
Geosci. Model Dev., 11, 2419–2427, 2018
https://doi.org/10.5194/gmd-11-2419-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
Geosci. Model Dev., 11, 2419–2427, 2018
https://doi.org/10.5194/gmd-11-2419-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.

Model description paper 20 Jun 2018

Model description paper | 20 Jun 2018

High-performance software framework for the calculation of satellite-to-satellite data matchups (MMS version 1.2)

Thomas Block et al.
Related authors  
Estimating snow depth on Arctic sea ice using satellite microwave radiometry and a neural network
Anne Braakmann-Folgmann and Craig Donlon
The Cryosphere, 13, 2421–2438, https://doi.org/10.5194/tc-13-2421-2019,https://doi.org/10.5194/tc-13-2421-2019, 2019
Short summary
Measuring ocean surface velocities with the KuROS and KaRADOC airborne near-nadir Doppler radars: a multi-scale analysis in preparation of the SKIM mission
Louis Marié, Fabrice Collard, Frédéric Nouguier, Lucia Pineau-Guillou, Danièle Hauser, François Boy, Stéphane Méric, Charles Peureux, Goulven Monnier, Bertrand Chapron, Adrien Martin, Pierre Dubois, Craig Donlon, Tania Casal, and Fabrice Ardhuin
Ocean Sci. Discuss., https://doi.org/10.5194/os-2019-77,https://doi.org/10.5194/os-2019-77, 2019
Manuscript under review for OS
Short summary
The FluxEngine air-sea gas flux toolbox: simplified interface and extensions for in situ analyses and multiple sparingly soluble gases
Thomas Holding, Ian G. Ashton, Jamie D. Shutler, Peter E. Land, Philip D. Nightingale, Andrew P. Rees, Ian Brown, Jean-Francois Piolle, Annette Kock, Hermann W. Bange, David K. Woolf, Lonneke Goddijn-Murphy, Ryan Pereira, Frederic Paul, Fanny Girand-Ardhuin, Bertrand Chapron, Gregor Rehder, Fabrice Ardhuin, and Craig J. Donlon
Ocean Sci. Discuss., https://doi.org/10.5194/os-2019-45,https://doi.org/10.5194/os-2019-45, 2019
Revised manuscript accepted for OS
Short summary
The Copernicus Surface Velocity Platform drifter with Barometer and Reference Sensor for Temperature (SVP-BRST): genesis, design, and initial results
Paul Poli, Marc Lucas, Anne O'Carroll, Marc Le Menn, Arnaud David, Gary K. Corlett, Pierre Blouch, David Meldrum, Christopher J. Merchant, Mathieu Belbeoch, and Kai Herklotz
Ocean Sci., 15, 199–214, https://doi.org/10.5194/os-15-199-2019,https://doi.org/10.5194/os-15-199-2019, 2019
Short summary
Uncertainty information in climate data records from Earth observation
Christopher J. Merchant, Frank Paul, Thomas Popp, Michael Ablain, Sophie Bontemps, Pierre Defourny, Rainer Hollmann, Thomas Lavergne, Alexandra Laeng, Gerrit de Leeuw, Jonathan Mittaz, Caroline Poulsen, Adam C. Povey, Max Reuter, Shubha Sathyendranath, Stein Sandven, Viktoria F. Sofieva, and Wolfgang Wagner
Earth Syst. Sci. Data, 9, 511–527, https://doi.org/10.5194/essd-9-511-2017,https://doi.org/10.5194/essd-9-511-2017, 2017
Short summary
Related subject area  
Earth and Space Science Informatics
Fast domain-aware neural network emulation of a planetary boundary layer parameterization in a numerical weather forecast model
Jiali Wang, Prasanna Balaprakash, and Rao Kotamarthi
Geosci. Model Dev., 12, 4261–4274, https://doi.org/10.5194/gmd-12-4261-2019,https://doi.org/10.5194/gmd-12-4261-2019, 2019
Short summary
VISIR-1.b: ocean surface gravity waves and currents for energy-efficient navigation
Gianandrea Mannarini and Lorenzo Carelli
Geosci. Model Dev., 12, 3449–3480, https://doi.org/10.5194/gmd-12-3449-2019,https://doi.org/10.5194/gmd-12-3449-2019, 2019
Short summary
Topological data analysis and machine learning for recognizing atmospheric river patterns in large climate datasets
Grzegorz Muszynski, Karthik Kashinath, Vitaliy Kurlin, Michael Wehner, and Prabhat
Geosci. Model Dev., 12, 613–628, https://doi.org/10.5194/gmd-12-613-2019,https://doi.org/10.5194/gmd-12-613-2019, 2019
Short summary
Global hydro-climatic biomes identified via multitask learning
Christina Papagiannopoulou, Diego G. Miralles, Matthias Demuzere, Niko E. C. Verhoest, and Willem Waegeman
Geosci. Model Dev., 11, 4139–4153, https://doi.org/10.5194/gmd-11-4139-2018,https://doi.org/10.5194/gmd-11-4139-2018, 2018
Short summary
A run control framework to streamline profiling, porting, and tuning simulation runs and provenance tracking of geoscientific applications
Wendy Sharples, Ilya Zhukov, Markus Geimer, Klaus Goergen, Sebastian Luehrs, Thomas Breuer, Bibi Naz, Ketan Kulkarni, Slavko Brdar, and Stefan Kollet
Geosci. Model Dev., 11, 2875–2895, https://doi.org/10.5194/gmd-11-2875-2018,https://doi.org/10.5194/gmd-11-2875-2018, 2018
Short summary
Cited articles  
Ault, M. R., Ault, M., Tumma, M., and Ranko, M.: Oracle 10g Grid & Real Application Clusters, Rampant TechPress., p. 24, 2004. 
Bali, M., Mittaz, J. P., Maturi, E., and Goldberg, M. D.: Comparisons of IASI-A and AATSR measurements of top-of-atmosphere radiance over an extended period, Atmos. Meas. Tech., 9, 3325–3336, https://doi.org/10.5194/amt-9-3325-2016, 2016. 
Beck, K.: Test Driven Development by Example, Addison-Wesley, ISBN-13: 978-0321146533, 2003. 
Böttcher, M., Quast, R., Storm, T., Corlett, G., Merchant, C., and Donlon, C.: Multi-sensor match-up database for SST CCI, ESA Sentinel-3 OLCI/SLSTR and MERIS/AATSR Workshop 2012 in Frascati, Italy, https://doi.org/10.6084/m9.figshare.1063282, 2012. 
Buehler, S. A., Kuvatov, M., Sreerekha, T. R., John, V. O., Rydberg, B., Eriksson, P., and Notholt, J.: A cloud filtering method for microwave upper tropospheric humidity measurements, Atmos. Chem. Phys., 7, 5531–5542, https://doi.org/10.5194/acp-7-5531-2007, 2007. 
Publications Copernicus
Download
Short summary
For calibration and validation purposes it is necessary to detect simultaneous data acquisitions from different spaceborne platforms. We present an algorithm and a software system which implements a general approach to resolve this problem. The multisensor matchup system (MMS) can detect simultaneous acquisitions in a large dataset (> 100 TB) and extract data for matching locations for further analysis. The MMS implements a flexible software infrastructure and allows for high parallelization.
For calibration and validation purposes it is necessary to detect simultaneous data acquisitions...
Citation