ECMWF: MARS User Documentation, available at:
https://software.ecmwf.int/wiki/display/UDOC/MARS+user+documentation,
last access: 10 August 2017. a

Hämmerlin, G. and Hoffmann, K.-H.: Numerische Mathematik, Springer, 4th
Edn., https://doi.org/10.1007/978-3-642-57894-6, 1994. a

Hermann, M.: Numerische Mathematik, München Oldenburg, 3rd Edn., 2011. a

Hunter, J. D.: Matplotlib: A 2D graphics environment, Comput. Sci. Eng., 9,
90–95, https://doi.org/10.1109/MCSE.2007.55, 2007. a

Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: Open source scientific
tools for Python, available at: http://www.scipy.org/ (last access:
10 August 2017), 2001–2017. a

Lauritzen, P. H., Ullrich, P. A., and Nair, R. D.: Atmospheric transport
schemes: Desirable properties and a semi-Lagrangian view on finite-volume
discretizations, in: Numerical Techniques for Global Atmospheric Models,
edited by: Lauritzen, P. H., Jablonski, C., Taylor, M. A., and Nair, R. D.,
Lect. Notes Comp. Sci., 80, 185–250, https://doi.org/10.1007/978-3-642-11640-7_8,
2010. a

Lin, J. C., Brunner, D., Gerbig, C., Stohl, A., Luhar, A., and Webley, P.
(Eds.): Lagrangian Modeling of the Atmosphere, in: Geophysical Monograph
Series, 26, https://doi.org/10.1029/GM200, 2013. a

Schmidt, J. W. and Heß, W.: Positivity of cubic polynomials on intervals
and positive spline interpolation, BIT, 28, 340–352,
https://doi.org/10.1007/BF01934097, 1988. a

Seibert, P. and Frank, A.: Source-receptor matrix calculation with a
Lagrangian particle dispersion model in backward mode, Atmos. Chem. Phys., 4,
51–63, https://doi.org/10.5194/acp-4-51-2004, 2004. a

Stohl, A., Forster, C., Frank, A., Seibert, P., and Wotawa, G.: Technical
note: The Lagrangian particle dispersion model FLEXPART version 6.2, Atmos.
Chem. Phys., 5, 2461–2474, https://doi.org/10.5194/acp-5-2461-2005, 2005. a, b

van der Walt, S., Colbert, S. C., and Varoquaux, G.: The NumPy array: A
structure for efficient numerical computation, Comput. Sci. Eng., 13, 22–30,
https://doi.org/10.1109/MCSE.2011.37, 2011. a

White, L., Adcroft, A., and Hallbert, R.: High-order regridding-remapping
schemes for continuous isopycnal and generalized coordinates in ocean models,
J. Comput. Phys., 228, 8665–8692, https://doi.org/10.1016/j.jcp.2009.08.016, 2009. a

Zerroukat, M., Wood, N., and Staniforth, A.: SLICE: A Semi-Lagrangian
Inherently Conserving and Efficient scheme for transport problems, Q. J. Roy.
Meteor. Soc., 128, 2801–2820, https://doi.org/10.1256/qj.02.69, 2002. a

Zerroukat, M., Wood, N., and Staniforth, A.: A monotone and positive-definite
filter for a Semi-Lagrangian Inherently Conserving and Efficient (SLICE)
scheme, Q. J. Roy. Meteor. Soc., 131, 2923–2936, https://doi.org/10.1256/qj.04.97,
2005. a, b

Zerroukat, M., Wood, N., and Staniforth, A.: The Parabolic Spline Method
(PSM) for conservative transport problems, Int. J. Numer. Meth. Fl., 51,
1297–1318, https://doi.org/10.1002/fld.1154, 2006. a