Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year 4.890
  • CiteScore value: 4.49 CiteScore 4.49
  • SNIP value: 1.539 SNIP 1.539
  • SJR value: 2.404 SJR 2.404
  • IPP value: 4.28 IPP 4.28
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 51 Scimago H index 51
Volume 11, issue 7 | Copyright
Geosci. Model Dev., 11, 2691-2715, 2018
https://doi.org/10.5194/gmd-11-2691-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.

Model description paper 09 Jul 2018

Model description paper | 09 Jul 2018

Plume-SPH 1.0: a three-dimensional, dusty-gas volcanic plume model based on smoothed particle hydrodynamics

Zhixuan Cao1, Abani Patra1, Marcus Bursik2, E. Bruce Pitman3, and Matthew Jones4 Zhixuan Cao et al.
  • 1Department of Mechanical and Aerospace Engineering and Computational Data Science and Engineering, University at Buffalo – SUNY, Buffalo, NY, USA
  • 2Department of Geology, University at Buffalo – SUNY, Buffalo, NY, USA
  • 3Department of Material Design and Innovation, University at Buffalo – SUNY, Buffalo, NY, USA
  • 4Center for Computational Research, University at Buffalo – SUNY, Buffalo, NY, USA

Abstract. Plume-SPH provides the first particle-based simulation of volcanic plumes. Smoothed particle hydrodynamics (SPH) has several advantages over currently used mesh-based methods in modeling of multiphase free boundary flows like volcanic plumes. This tool will provide more accurate eruption source terms to users of volcanic ash transport and dispersion models (VATDs), greatly improving volcanic ash forecasts. The accuracy of these terms is crucial for forecasts from VATDs, and the 3-D SPH model presented here will provide better numerical accuracy. As an initial effort to exploit the feasibility and advantages of SPH in volcanic plume modeling, we adopt a relatively simple physics model (3-D dusty-gas dynamic model assuming well-mixed eruption material, dynamic equilibrium and thermodynamic equilibrium between erupted material and air that entrained into the plume, and minimal effect of winds) targeted at capturing the salient features of a volcanic plume. The documented open-source code is easily obtained and extended to incorporate other models of physics of interest to the large community of researchers investigating multiphase free boundary flows of volcanic or other origins.

The Plume-SPH code (https://doi.org/10.5281/zenodo. 572819) also incorporates several newly developed techniques in SPH needed to address numerical challenges in simulating multiphase compressible turbulent flow. The code should thus be also of general interest to the much larger community of researchers using and developing SPH-based tools. In particular, the SPH−ε turbulence model is used to capture mixing at unresolved scales. Heat exchange due to turbulence is calculated by a Reynolds analogy, and a corrected SPH is used to handle tensile instability and deficiency of particle distribution near the boundaries. We also developed methodology to impose velocity inlet and pressure outlet boundary conditions, both of which are scarce in traditional implementations of SPH.

The core solver of our model is parallelized with the message passing interface (MPI) obtaining good weak and strong scalability using novel techniques for data management using space-filling curves (SFCs), object creation time-based indexing and hash-table-based storage schemes. These techniques are of interest to researchers engaged in developing particles in cell-type methods. The code is first verified by 1-D shock tube tests, then by comparing velocity and concentration distribution along the central axis and on the transverse cross with experimental results of JPUE (jet or plume that is ejected from a nozzle into a uniform environment). Profiles of several integrated variables are compared with those calculated by existing 3-D plume models for an eruption with the same mass eruption rate (MER) estimated for the Mt. Pinatubo eruption of 15 June 1991. Our results are consistent with existing 3-D plume models. Analysis of the plume evolution process demonstrates that this model is able to reproduce the physics of plume development.

Download & links
Publications Copernicus
Download
Short summary
Plume-SPH provides the first particle-based simulation of volcanic plumes. Smooth particle hydrodynamics used here has several advantages over mesh-based methods for multiphase free boundary flows like volcanic plumes. This tool will provide more accurate eruption source terms to users of volcanic ash transport and dispersion models, greatly improving volcanic ash forecasts. The Plume-SPH code incorporates several newly developed techniques in SPH-needed multiphase compressible turbulent flow.
Plume-SPH provides the first particle-based simulation of volcanic plumes. Smooth particle...
Citation
Share