Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.154 IF 5.154
  • IF 5-year value: 5.697 IF 5-year
    5.697
  • CiteScore value: 5.56 CiteScore
    5.56
  • SNIP value: 1.761 SNIP 1.761
  • IPP value: 5.30 IPP 5.30
  • SJR value: 3.164 SJR 3.164
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 59 Scimago H
    index 59
  • h5-index value: 49 h5-index 49
GMD | Articles | Volume 11, issue 7
Geosci. Model Dev., 11, 2691–2715, 2018
https://doi.org/10.5194/gmd-11-2691-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
Geosci. Model Dev., 11, 2691–2715, 2018
https://doi.org/10.5194/gmd-11-2691-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.

Model description paper 09 Jul 2018

Model description paper | 09 Jul 2018

Plume-SPH 1.0: a three-dimensional, dusty-gas volcanic plume model based on smoothed particle hydrodynamics

Zhixuan Cao et al.
Model code and software

Plume-SPH code Z. Cao & Plume-SPH https://doi.org/10.5281/zenodo.572819

Publications Copernicus
Download
Short summary
Plume-SPH provides the first particle-based simulation of volcanic plumes. Smooth particle hydrodynamics used here has several advantages over mesh-based methods for multiphase free boundary flows like volcanic plumes. This tool will provide more accurate eruption source terms to users of volcanic ash transport and dispersion models, greatly improving volcanic ash forecasts. The Plume-SPH code incorporates several newly developed techniques in SPH-needed multiphase compressible turbulent flow.
Plume-SPH provides the first particle-based simulation of volcanic plumes. Smooth particle...
Citation