Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.154 IF 5.154
  • IF 5-year value: 5.697 IF 5-year
    5.697
  • CiteScore value: 5.56 CiteScore
    5.56
  • SNIP value: 1.761 SNIP 1.761
  • IPP value: 5.30 IPP 5.30
  • SJR value: 3.164 SJR 3.164
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 59 Scimago H
    index 59
  • h5-index value: 49 h5-index 49
GMD | Articles | Volume 11, issue 7
Geosci. Model Dev., 11, 2691–2715, 2018
https://doi.org/10.5194/gmd-11-2691-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
Geosci. Model Dev., 11, 2691–2715, 2018
https://doi.org/10.5194/gmd-11-2691-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.

Model description paper 09 Jul 2018

Model description paper | 09 Jul 2018

Plume-SPH 1.0: a three-dimensional, dusty-gas volcanic plume model based on smoothed particle hydrodynamics

Zhixuan Cao et al.
Related authors  
Statistical theory of probabilistic hazard maps: a probability distribution for the hazard boundary location
David M. Hyman, Andrea Bevilacqua, and Marcus I. Bursik
Nat. Hazards Earth Syst. Sci., 19, 1347–1363, https://doi.org/10.5194/nhess-19-1347-2019,https://doi.org/10.5194/nhess-19-1347-2019, 2019
Short summary
Probabilistic forecasting of plausible debris flows from Nevado de Colima (Mexico) using data from the Atenquique debris flow, 1955
Andrea Bevilacqua, Abani K. Patra, Marcus I. Bursik, E. Bruce Pitman, José Luis Macías, Ricardo Saucedo, and David Hyman
Nat. Hazards Earth Syst. Sci., 19, 791–820, https://doi.org/10.5194/nhess-19-791-2019,https://doi.org/10.5194/nhess-19-791-2019, 2019
Short summary
Related subject area  
Numerical Methods
Efficiency and robustness in Monte Carlo sampling for 3-D geophysical inversions with Obsidian v0.1.2: setting up for success
Richard Scalzo, David Kohn, Hugo Olierook, Gregory Houseman, Rohitash Chandra, Mark Girolami, and Sally Cripps
Geosci. Model Dev., 12, 2941–2960, https://doi.org/10.5194/gmd-12-2941-2019,https://doi.org/10.5194/gmd-12-2941-2019, 2019
Short summary
LSCE-FFNN-v1: a two-step neural network model for the reconstruction of surface ocean pCO2 over the global ocean
Anna Denvil-Sommer, Marion Gehlen, Mathieu Vrac, and Carlos Mejia
Geosci. Model Dev., 12, 2091–2105, https://doi.org/10.5194/gmd-12-2091-2019,https://doi.org/10.5194/gmd-12-2091-2019, 2019
Short summary
FESOM-C v.2: coastal dynamics on hybrid unstructured meshes
Alexey Androsov, Vera Fofonova, Ivan Kuznetsov, Sergey Danilov, Natalja Rakowsky, Sven Harig, Holger Brix, and Karen Helen Wiltshire
Geosci. Model Dev., 12, 1009–1028, https://doi.org/10.5194/gmd-12-1009-2019,https://doi.org/10.5194/gmd-12-1009-2019, 2019
Short summary
A new method (M3Fusion v1) for combining observations and multiple model output for an improved estimate of the global surface ozone distribution
Kai-Lan Chang, Owen R. Cooper, J. Jason West, Marc L. Serre, Martin G. Schultz, Meiyun Lin, Virginie Marécal, Béatrice Josse, Makoto Deushi, Kengo Sudo, Junhua Liu, and Christoph A. Keller
Geosci. Model Dev., 12, 955–978, https://doi.org/10.5194/gmd-12-955-2019,https://doi.org/10.5194/gmd-12-955-2019, 2019
Short summary
DCMIP2016: the splitting supercell test case
Colin M. Zarzycki, Christiane Jablonowski, James Kent, Peter H. Lauritzen, Ramachandran Nair, Kevin A. Reed, Paul A. Ullrich, David M. Hall, Mark A. Taylor, Don Dazlich, Ross Heikes, Celal Konor, David Randall, Xi Chen, Lucas Harris, Marco Giorgetta, Daniel Reinert, Christian Kühnlein, Robert Walko, Vivian Lee, Abdessamad Qaddouri, Monique Tanguay, Hiroaki Miura, Tomoki Ohno, Ryuji Yoshida, Sang-Hun Park, Joseph B. Klemp, and William C. Skamarock
Geosci. Model Dev., 12, 879–892, https://doi.org/10.5194/gmd-12-879-2019,https://doi.org/10.5194/gmd-12-879-2019, 2019
Short summary
Cited articles  
Adami, S., Hu, X., and Adams, N.: A new surface-tension formulation for multi-phase SPH using a reproducing divergence approximation, J. Comput. Phys., 229, 5011–5021, 2010. a
Anderson, D., McFadden, G. B., and Wheeler, A.: Diffuse-interface methods in fluid mechanics, Annu. Rev. Fluid Mech., 30, 139–165, 1998. a
Becker, M. and Teschner, M.: Weakly compressible SPH for free surface flows, in: Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation, Eurographics Association, 209–217, 2007. a
Biswas, R. and Oliker, L.: Experiments with repartitioning and load balancing adaptive meshes, in: Grid Generation and Adaptive Algorithms, Springer, 89–111, 1999. a
Bursik, M.: Effect of wind on the rise height of volcanic plumes, Geophys. Res. Lett., 28, 3621–3624, 2001. a
Publications Copernicus
Download
Short summary
Plume-SPH provides the first particle-based simulation of volcanic plumes. Smooth particle hydrodynamics used here has several advantages over mesh-based methods for multiphase free boundary flows like volcanic plumes. This tool will provide more accurate eruption source terms to users of volcanic ash transport and dispersion models, greatly improving volcanic ash forecasts. The Plume-SPH code incorporates several newly developed techniques in SPH-needed multiphase compressible turbulent flow.
Plume-SPH provides the first particle-based simulation of volcanic plumes. Smooth particle...
Citation