Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year 4.890
  • CiteScore value: 4.49 CiteScore 4.49
  • SNIP value: 1.539 SNIP 1.539
  • SJR value: 2.404 SJR 2.404
  • IPP value: 4.28 IPP 4.28
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 51 Scimago H index 51
Volume 11, issue 7 | Copyright
Geosci. Model Dev., 11, 2739-2762, 2018
https://doi.org/10.5194/gmd-11-2739-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Model description paper 11 Jul 2018

Model description paper | 11 Jul 2018

MOPSMAP v1.0: a versatile tool for the modeling of aerosol optical properties

Josef Gasteiger1 and Matthias Wiegner2 Josef Gasteiger and Matthias Wiegner
  • 1Faculty of Physics, University of Vienna, Vienna, Austria
  • 2Meteorologisches Institut, Ludwig-Maximilians-Universität, Munich, Germany

Abstract. The spatiotemporal distribution and characterization of aerosol particles are usually determined by remote-sensing and optical in situ measurements. These measurements are indirect with respect to microphysical properties, and thus inversion techniques are required to determine the aerosol microphysics. Scattering theory provides the link between microphysical and optical properties; it is not only needed for such inversions but also for radiative budget calculations and climate modeling. However, optical modeling can be very time-consuming, in particular if nonspherical particles or complex ensembles are involved.

In this paper we present the MOPSMAP package (Modeled optical properties of ensembles of aerosol particles), which is computationally fast for optical modeling even in the case of complex aerosols. The package consists of a data set of pre-calculated optical properties of single aerosol particles, a Fortran program to calculate the properties of user-defined aerosol ensembles, and a user-friendly web interface for online calculations. Spheres, spheroids, and a small set of irregular particle shapes are considered over a wide range of sizes and refractive indices. MOPSMAP provides the fundamental optical properties assuming random particle orientation, including the scattering matrix for the selected wavelengths. Moreover, the output includes tables of frequently used properties such as the single-scattering albedo, the asymmetry parameter, or the lidar ratio. To demonstrate the wide range of possible MOPSMAP applications, a selection of examples is presented, e.g., dealing with hygroscopic growth, mixtures of absorbing and non-absorbing particles, the relevance of the size equivalence in the case of nonspherical particles, and the variability in volcanic ash microphysics.

The web interface is designed to be intuitive for expert and nonexpert users. To support users a large set of default settings is available, e.g., several wavelength-dependent refractive indices, climatologically representative size distributions, and a parameterization of hygroscopic growth. Calculations are possible for single wavelengths or user-defined sets (e.g., of specific remote-sensing application). For expert users more options for the microphysics are available. Plots for immediate visualization of the results are shown. The complete output can be downloaded for further applications. All input parameters and results are stored in the user's personal folder so that calculations can easily be reproduced. The web interface is provided at https://mopsmap.net (last access: 9 July 2018) and the Fortran program including the data set is freely available for offline calculations, e.g., when large numbers of different runs for sensitivity studies are to be made.

Download & links
Publications Copernicus
Download
Short summary
A software package has been developed to model optical properties of atmospheric aerosol ensembles based on a pre-calculated single particle data set. Spherical particles, spheroids, and a small set of irregular shapes are covered. A flexible and intuitive web interface is provided for online calculations of user-defined ensembles. The paper describes the package and outlines several applications, e.g., optical properties for aerosol size bins of an aerosol transport model.
A software package has been developed to model optical properties of atmospheric aerosol...
Citation
Share