Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.154 IF 5.154
  • IF 5-year value: 5.697 IF 5-year
    5.697
  • CiteScore value: 5.56 CiteScore
    5.56
  • SNIP value: 1.761 SNIP 1.761
  • IPP value: 5.30 IPP 5.30
  • SJR value: 3.164 SJR 3.164
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 59 Scimago H
    index 59
  • h5-index value: 49 h5-index 49
GMD | Articles | Volume 11, issue 7
Geosci. Model Dev., 11, 2813–2824, 2018
https://doi.org/10.5194/gmd-11-2813-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Geosci. Model Dev., 11, 2813–2824, 2018
https://doi.org/10.5194/gmd-11-2813-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Model description paper 13 Jul 2018

Model description paper | 13 Jul 2018

Simulating atmospheric tracer concentrations for spatially distributed receptors: updates to the Stochastic Time-Inverted Lagrangian Transport model's R interface (STILT-R version 2)

Benjamin Fasoli et al.
Viewed  
Total article views: 1,411 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
907 477 27 1,411 35 35
  • HTML: 907
  • PDF: 477
  • XML: 27
  • Total: 1,411
  • BibTeX: 35
  • EndNote: 35
Views and downloads (calculated since 02 Mar 2018)
Cumulative views and downloads (calculated since 02 Mar 2018)
Viewed (geographical distribution)  
Total article views: 1,342 (including HTML, PDF, and XML) Thereof 1,326 with geography defined and 16 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited  
Saved (final revised paper)  
No saved metrics found.
Saved (discussion paper)  
No saved metrics found.
Discussed (final revised paper)  
No discussed metrics found.
Discussed (discussion paper)  
No discussed metrics found.
Latest update: 13 Nov 2019
Publications Copernicus
Download
Short summary
The Stochastic Time-Inverted Lagrangian Transport (STILT) model is used to determine the area upstream that influences the air arriving at a given location. We introduce a new framework that makes the STILT model faster and easier to deploy and improves results. We also show how the model can be applied to spatially complex measurement strategies using trace gas observations collected onboard a Salt Lake City, Utah, USA, light-rail train.
The Stochastic Time-Inverted Lagrangian Transport (STILT) model is used to determine the area...
Citation