Articles | Volume 11, issue 7
https://doi.org/10.5194/gmd-11-2841-2018
https://doi.org/10.5194/gmd-11-2841-2018
Development and technical paper
 | 
13 Jul 2018
Development and technical paper |  | 13 Jul 2018

EDDA 2.0: integrated simulation of debris flow initiation and dynamics considering two initiation mechanisms

Ping Shen, Limin Zhang, Hongxin Chen, and Ruilin Fan

Related authors

Variation of sediment supply by periglacial debris flows at Zelunglung in the eastern syntaxis of Himalayas since the 1950 Assam Earthquake
Kaiheng Hu, Hao Li, Shuang Liu, Li Wei, Xiaopeng Zhang, Limin Zhang, Bo Zhang, and Manish Raj Gouli
EGUsphere, https://doi.org/10.5194/egusphere-2024-312,https://doi.org/10.5194/egusphere-2024-312, 2024
Short summary
Assessing the annual risk of vehicles being hit by a rainfall-induced landslide: a case study on Kennedy Road in Wan Chai, Hong Kong
Meng Lu, Jie Zhang, Lulu Zhang, and Limin Zhang
Nat. Hazards Earth Syst. Sci., 20, 1833–1846, https://doi.org/10.5194/nhess-20-1833-2020,https://doi.org/10.5194/nhess-20-1833-2020, 2020
Short summary
Characterizing the spatial variations and correlations of large rainstorms for landslide study
Liang Gao, Limin Zhang, and Mengqian Lu
Hydrol. Earth Syst. Sci., 21, 4573–4589, https://doi.org/10.5194/hess-21-4573-2017,https://doi.org/10.5194/hess-21-4573-2017, 2017
Short summary
Spatial characteristics of severe storms in Hong Kong
L. Gao and L. M. Zhang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-12-6981-2015,https://doi.org/10.5194/hessd-12-6981-2015, 2015
Manuscript not accepted for further review
Short summary
EDDA 1.0: integrated simulation of debris flow erosion, deposition and property changes
H. X. Chen and L. M. Zhang
Geosci. Model Dev., 8, 829–844, https://doi.org/10.5194/gmd-8-829-2015,https://doi.org/10.5194/gmd-8-829-2015, 2015
Short summary

Related subject area

Hydrology
Reservoir Assessment Tool version 3.0: a scalable and user-friendly software platform to mobilize the global water management community
Sanchit Minocha, Faisal Hossain, Pritam Das, Sarath Suresh, Shahzaib Khan, George Darkwah, Hyongki Lee, Stefano Galelli, Konstantinos Andreadis, and Perry Oddo
Geosci. Model Dev., 17, 3137–3156, https://doi.org/10.5194/gmd-17-3137-2024,https://doi.org/10.5194/gmd-17-3137-2024, 2024
Short summary
HydroFATE (v1): a high-resolution contaminant fate model for the global river system
Heloisa Ehalt Macedo, Bernhard Lehner, Jim Nicell, and Günther Grill
Geosci. Model Dev., 17, 2877–2899, https://doi.org/10.5194/gmd-17-2877-2024,https://doi.org/10.5194/gmd-17-2877-2024, 2024
Short summary
Validation of a new global irrigation scheme in the land surface model ORCHIDEE v2.2
Pedro Felipe Arboleda-Obando, Agnès Ducharne, Zun Yin, and Philippe Ciais
Geosci. Model Dev., 17, 2141–2164, https://doi.org/10.5194/gmd-17-2141-2024,https://doi.org/10.5194/gmd-17-2141-2024, 2024
Short summary
GPEP v1.0: the Geospatial Probabilistic Estimation Package to support Earth science applications
Guoqiang Tang, Andrew W. Wood, Andrew J. Newman, Martyn P. Clark, and Simon Michael Papalexiou
Geosci. Model Dev., 17, 1153–1173, https://doi.org/10.5194/gmd-17-1153-2024,https://doi.org/10.5194/gmd-17-1153-2024, 2024
Short summary
GEMS v1.0: Generalizable Empirical Model of Snow Accumulation and Melt, based on daily snow mass changes in response to climate and topographic drivers
Atabek Umirbekov, Richard Essery, and Daniel Müller
Geosci. Model Dev., 17, 911–929, https://doi.org/10.5194/gmd-17-911-2024,https://doi.org/10.5194/gmd-17-911-2024, 2024
Short summary

Cited articles

Archfield, S. A., Steeves, P. A., Guthrie, J. D., and Ries III, K. G.: Towards a publicly available, map-based regional software tool to estimate unregulated daily streamflow at ungauged rivers, Geosci. Model Dev., 6, 101-115, https://doi.org/10.5194/gmd-6-101-2013, 2013. 
Baum, R. L. and Godt, J. W.: Early warning of rainfall-induced shallow landslides and debris flows in the USA, Landslides, 7, 259–272, https://doi.org/10.1007/s10346-009-0177-0, 2010. 
Bartelt, P., Buehler, Y., Christen, M., Deubelbeiss, Y., Graf, C., McArdell, B., Salz, M., and Schneider, M.: A numerical model for debris flow in research and practice, User Manual v1.5 Debris Flow, WSL Institute for Snow and Avalanche Research SLF, Switzerland, 2013. 
Beguería, S., Van Asch, Th. W. J., Malet, J.-P., and Gröndahl, S.: A GIS-based numerical model for simulating the kinematics of mud and debris flows over complex terrain, Nat. Hazards Earth Syst. Sci., 9, 1897–1909, https://doi.org/10.5194/nhess-9-1897-2009, 2009. 
Berti, M. and Simoni, A.: Experimental evidences and numerical modelling of debris flow initiated by channel runoff, Landslides, 2, 171–182, https://doi.org/10.1007/s10346-005-0062-4, 2005. 
Download
Short summary
A rainstorm can trigger numerous debris flows. A difficult task in debris flow risk assessment is to identify debris flow initiation locations and volumes. This paper presents a new model to solve this problem by physically simulating the initiation of debris flows by hillslope bed erosion and transformation from slope failures. The sediment from these two initiation mechanisms joins the flow mixture, and the volume of the flow mixture increases along the flow path due to additional bed erosion.