Avalanche simulation software based on foam-
extend

Updated versions of code and manual can be found at https://bitbucket.org/matti2/fasavagehutterfoam.
The OpenFOAM user guide can be found on https://lwww.openfoam.com/documentation/user-guide/

Author: matthias.rauter@uibk.ac.at

Copyright

Source code

All code is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

This software is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License along with OpenFOAM. If not, see
http://www.gnu.org/licenses/.

User manual

This work is distributed under the Creative Commons Attribution 3.0 License (CC-BY).

Raw simulation data

The digital elevation model for tutorial wolfsgrube is provided by AMT DER TIROLER LANDESREGIERUNG (AdTLR)
Abteilung Geoinformation

Licence: Creative Commons Attribution 3.0 License (CC-BY).

Solver Theory

The solver is based on a depth-integrated flow model, similar to the Savage-Hutter model (Savage and Hutter; 1989,
1991).
The theory of this solver is described by Rauter and Tukovic (2018). The respective preprint is availabel on arxiv.org.

The application to natural terrain is described by Rauter, Kofler, Huber and Fellin (submitted to GMD).

The governing equations can be expressed in terms of surface partial differential equations as

Oh _

=tV (hu) = S — S4, ()

9 (hu) L 1 1

— +Vs-(huu):—;rb+hgs—2—pvs (hpy),

https://bitbucket.org/matti2/fasavagehutterfoam
https://www.openfoam.com/documentation/user-guide/
http://www.gnu.org/licenses/
https://gis.tirol.gv.at/ogd/geografie_planung/DGM/LA_DGM10.zip
https://dx.doi.org/10.1017/S0022112089000340
https://dx.doi.org/10.1007/BF01175958
https://dx.doi.org/10.1016/j.compfluid.2018.02.017
https://arxiv.org/abs/1802.05229
https://www.geosci-model-dev.net/

. 1 1
V- (huu) =hg, — 2—an (hpy) — ;nbpba (3

with unknown flow fields

« depth-averaged flow velocity u,
o flow thickness h and
o basal pressure py, .

Constant parameters are

o the density p and
o the gravitational acceleration g = g, + &, -

User-selectable models have to be provided for

¢ the basal friction 1, ,)
o the entrainment rate .S, = % and

« the deposition rate S;.
Initial conditions have to be provided for

the flow thickness h,
the depth-integrated flow velocty u and
the mountain snow cover thickness hmgc (only if entrainment/deposition is active).

The classic pressure equation can be applied by

¢ deactivating the second term on the right hand side of Equation (3) (switch pressureFeedback in
tansportProperties).

Spatial differential operators

V.= (npny)-V

and

Vsi= I—-npnp)-V

are described in detail by Rauter and Tukovic (2018).

The numerical solution is based on the Finite Area Library.

Getting started (for Linux)

The majority of the here provided code is available in OpenFOAM-v1712 and provided in the standard
installation: https://develop.openfoam.com/Community/avalanche

1 Install foam-extend-4.0

You need to install foam-extend from source to get the newest version. The next official release will contain all required
features, making installation more confortable.

¢ Get the source code via git:

cd ~

mkdir foam

cd foam

git clone git://git.code.sf.net/p/foam-extend/foam-extend-4.0 foam-extend-4.0

https://arxiv.org/abs/1802.05229
https://develop.openfoam.com/Community/avalanche

¢ Install dependencies (newest Ubuntu, may be different for other OS):

sudo apt-get update
sudo apt-get install git-core build-essential binutils-dev cmake flex \
zliblg-dev gt4-dev-tools libgt4-dev libncurses5-dev libiberty-dev \

libxt-dev rpm mercurial graphviz python python-dev

e Change to build directory

cd ~/foam/foam-extend-4.0

o Edit preference file and bashrc

echo export WM_THIRD_ PARTY USE BISON 27=1 >> etc/prefs.sh
echo "alias fe40='source \$HOME/foam/foam-extend-4.0/etc/bashrc'" >> $HOME/.bashrc

source etc/bashrc

e Set path to Qt (for paraview), may be different for your enviroment

export QT BIN DIR=/usr/bin/gmake
echo "export QT BIN DIR=$QT BIN DIR" >> etc/prefs.sh

e Start compiling

./Allwmake.firstInstall

More information and help: OpenFOAM Wiki

2 Build solver

e Clone code repositroy

cd ~/foam
git clone https://bitbucket.org/matti2/fasavagehutterfoam.git

¢ Change to build directory, load foam-extend enviroment

cd ~/foam/fasavagehutterfoam
fed0

¢ Start compiling

./Allwmake

3 Run test simulations

e Change to tutorials:

cd ~/foam/faSavagehutterfoam/tutorials/finiteArea/faSavageHutterFoam

e Choose tutorial (see below for details) and change to the respective folder:

centrifugalforce
dresslersdambreak
simpleslope
simpleslope_exp

O O O o

https://openfoamwiki.net/index.php/Installation/Linux/foam-extend-4.0

o rittersdambreak
o stokersdambreak
o wolfsgrube

¢ Load foam-extend enviroment and run example:

fed4l
./Allrun

Solver

Implicit solver

The implicit solver can be found in faSavagehutterfoam/implicictSolver . It can be called with
faSavageHutterFoam . Details about this solver can be found in Rauter and Tukovic (2018).

Explicit solver

The explicit solver can be found in faSavagehutterfoam/explicitSolver . It can be called with

faSavageHutterFoamExp . It is similar to the implicit solver but applies an explicit time integration scheme. Spatial
terms are identical to the implicit solver. The explicit solver is faster than the implicit one but not very stable (yet).
However, the simple slope example is running and results are similar to the implicit solver (except for some
diffuison/creeping in the deposition zone.

Utilities

slopeMesh

slopeMesh
This simple utility can be used to create simple slopes as used in many of the tutorials.
For an example see tutorials/simpleslope/constant/slopeMeshDict .

The source code can be found in faSavagehutterfoam/slopeMesh .

releaseAreaMapping

releaseAreaMapping

This utility can be used to set the initial condition (e.g. the initial release zone). This utility reads input from the file
constant/releaseArea .

Usually the initial condition is seton ©o/h and 0/hentrain . The initial velocity ©/us is usually setto constant

(0,0,0) .

Three forms of relase areas can be created:

Sphere

https://dx.doi.org/10.1016/j.compfluid.2018.02.017

sphere

Spherical release area, as often used for small scale experiments.
For an example see tutorials/simpleslope/constant/releaseArea .
Setting a spherical mass on a slope:

fields
(
h //name of the field
{
default 0; //default value outside the release area
regions //regions can contain many release areas
(
releaseArea?2 //name of the release area
{
type sphere; //type sphere for spherical release
center (2.0 0.0 3.5); //center of the sphere
r 2.0; //radius of the sphere
scale 1.0; //scale up/down the resulting field
}
)i
}
);
Polygon
polygon

Classic slab relase.
For an example see tutorials/wolfsgrube/constant/releaseArea .
Setting a slab release on a slope:

fields
(
h //name of the field
{
default 0; //default value outside the release area
regions //regions can contain many release areas
(
releaseAreal //name of the release area
{
type polygon; //type polygon for a simple slab
offset (0 0 0); //offset polygon by this value
vertices //list of points defining the area
(
(4.0 -2.0 0.0)
(4.0 2.0 0.0)
(2.0 2.0 0.0)
(2.0 -2.0 0.0)

)
value 0.5; //target value within the polygonal area

Polygon with linear function

polygonlinear

Same as polygon but with a linear function for the field within the polygon. Useful to generate complex initial conditions,
e.g., the mountain snow cover thickness in Rauter et al. (2016).

fields
(
h //name of the field
{
default 0; //default value outside the release area
regions //regions can contain many release areas
(
releaseAreal //name of the release area
{
type polygonlinear; //type polygon for a simple slab
offset (0 0 0); //offset polygon by this value
vertices //list of points defining the area
(
(4.0 -2.0 0.0)
(4.0 2.0 0.0)
(2.0 2.0 0.0)
(2.0 -2.0 0.0)
)i
valueAtZero 1.6; //value at (x0,y0,z0)
x0 0; //x0 (default value 0)
dfdx 0; //growth with x (default value 0)
y0 0; //y0 (default value 0)
dfdy 0; //growth with y (default value 0)
z0 1289; //z0 (default value 0)
dfdz 0.0008; //growth with z (default value 0)
projectToNormal yes; //translate vertical height to surface normal thickn
ess

)

The source code can be found in faSavagehutterfoam/releaseAreaMapping .

writeFlatness

writeFlatness

Write the flatness of finite area faces into the field time/Flatness . The flatness is defined as the ratio between face
area and the area of individual triangles of a face (e.g. butterfly angle). A value of 1 indicates perfect flatness of the
surface mesh.

The source code can be found in faSavageHutterFoam/postProcessing/writeFlatness .

fafieldsToAscii

fafieldsToAscii

https://www.nat-hazards-earth-syst-sci.net/16/2325/2016/

This tool reads all finite area fields from all time steps and writes result into a csv-file. The csv-file can be further used
to create shape-files (see script meshtxt2shape.py).

Set parameters in system/fafieldsToAsciiDict , e.Q:

offset (0.0 0.0 0.0); //offset position vector
fields //1list of fields to export.
(
ngsn //here we export velocity
"hn //and flow thickness

)i

See also foam2shape.py for a direct export.

faMeshToAscii

faMeshToAscii

This tool reads the finite area mesh and writes the respective geometry into a csv-file. The csv-file can be further used
to create shape-files (see script meshtxt2shape.py).

Set parameters in system/faMeshToAsciiDict , €.Q:

offset (0.0 0.0 0.0); // offset position vector

See also foam2shape.py for a direct export.

Scripts

Some useful python(2.7) scripts can be found in the folder scripts . Dependencies are numpy , scipy and
shapefile .

txt2mesh.py

This script can be used to generate an STL-file from a digital terrain model (ascii file).
Moreover, the script can create an OpenFOAM mesh. See also tutorial wolfsgrube (script runMesh.sh or
runPMesh.sh).

usage: txt2mesh.py [-h] [-i I] [-o O] [-xres XRES] [-yres YRES] [-pl P1]
[-p2 P2] [-p3 P3] [-p4 P4] [-plot] [-walls] [-mesh]
[-£fillup] [-quad] [-trionly] [-exactcopy]
[-butterflyangle BUTTERFLYANGLE] [-offsetx OFFSETX]
[-offsety OFFSETY]

Taking a Raster-File and creating a STL-File

optional arguments:

-h, --help show this help message and exit
-iI input filename
-0 0 output filename

-xres XRES X resolution

-yres YRES y resolution

-pl P1 lower left edgepoint

-p2 P2 lower right edgepoint

-p3 P3 upper right edgepoint

-p4 P4 upper left edgepoint

-plot show a plot of dem and boundaries

-walls add walls to the stl (e.g. for cfmesh)
-mesh create mesh instead of stl

-fillup £ill up nan values with neatrest neighbor
-quad create mesh with quads

-trionly create mesh with triangles only
-exactcopy create a triangulation with the resolution of the dem

-butterflyangle BUTTERFLYANGLE

maximum allowed butterfly angle
-offsetx OFFSETX offset mesh by x m
-offsety OFFSETY offset mesh by vy m

Example (create OpenFOAM Mesh of DEM dem.asc in folder constant/polyMesh):

mkdir constant/polyMesh

txt2mesh.py \
-xres 100 -yres 200 \
-pl "-3609., 219911" -p2 "-4800., 221820." -p3 "-4100., 222350." -p4 "-2880., 220200." \
-fillup \
-offsetx "2000" \
-offsety "-221000" \
-butterflyangle 5 \
-i dem.asc \

-mesh -o constant/polyMesh;

Example (create STL-file of DEM dem.asc for, e.g. cfMesh):

txt2mesh.py \
-xres 400 -yres 800 \
-pl "-3609., 219911" -p2 "-4800., 221820." -p3 "-4100., 222350." -p4 "-2880., 220200." \
-fillup \
-i dem.asc \
-walls \
-offgetx "2000" \
-offsety "-221000" \

-o surface.stl;

meshtxt2shape.py

This script processes the CSV-files created by fafieldsToAscii and faMeshToAscii and produces Esri
Shapefiles.

usage: meshtxt2shape.py [-h] [-meshFile MESHFILE] [-fieldsFile FIELDSFILE]
[-asPoints] [-o O]

optional arguments:
-h, --help show this help message and exit
-meshFile MESHFILE input meshfile (only for cells) (as csv, use

faMeshtoAscii)

-fieldsFile FIELDSFILE
input fieldsfile (as csv, use faFieldstoAscii)
-asPoints export points in area centers instead of cells

-o 0 output destination

See also foam2shape.py for a direct export.

shape2txt.py

This script reads release areas from ESRI-shapefiles and creates the respective dictionary for releaseAreaMapping.
See also tutorial wolfsgrube (script runSim.sh).

usage: shape2txt.py [-h] [-i I] [-o0 0] [-f F] [-v V] [-x0 X0] [-yO0 YO]
[-2z0 Z0] [-dfdx DFDX] [-dfdy DFDY] [-dfdz DFDZ]
[-normal NORMAL] [-d D] [-offsetx OFFSETX]
[-offsety OFFSETY]

optional arguments:

-h, --help show this help message and exit
-iI input shapefile

-0 0 write release file

-f F field name

vV release area value

-x0 X0 reference point x

-y0 YO reference point y

-z0 Z0 reference point z

-dfdx DFDX increase of f with x

-dfdy DFDY increase of f with y

-dfdz DFDZ increase of f with z

-normal NORMAL project to normal from vertical (yes/no)
-d D default value

-offsetx OFFSETX offset mesh by x m
-offsety OFFSETY offset mesh by y m

foam2shape.py

This script directly reads OpenFOAM meshes and results and exports them as ESRI shapefiles. If this tool has problem
reading OpenFOAM files, you should try faMeshToAscii and fafieldsToAscii in combination with meshtxt2shape.py.

usage: foam2shape.py [-h] [-case CASE] [-fields FIELDS] [-asPoints] [-o O]
[-offsetx OFFSETX] [-offsety OFFSETY]

optional arguments:

-h, --help show this help message and exit

-case CASE OpenFOAM case folder

-fields FIELDS input all fieldname (separated by space)
-asPoints export points in area centers instead of cells
-0 0 output destination

-offsetx OFFSETX offset mesh by x m
-offsety OFFSETY offset mesh by y m

paraview_exportShapefile.py

This script is intended to use within ParaView in combination with the contour filter. The script will export the

(currently selected) contour as ESRI-shapefile. Filename can be selected. Tested for paraview 5.0.1.

User Selectable Models

Friciton models

The friction model describes the friction between flowing mass (water body, avalanche) and the base.
It has to be setin the file constant/transportProperties (see below).
Friction models can be found in the folder fasavagehutterfoam/frictionModels .
To implement a new friction model, copy an exisitng one, rename it and modify it.
Currently there are the following friction models available:
Darcy-Weisbach
Darcyweisbach
Weisbach (1845) (wikipedia.org):
7| =C} pg|ul?

Parameters (see also tutorial dresslersdambreak:):

frictionModel DarcyWeisbach;
DarcyWeisbachCoeffs
{
cf cf [0 -1 200 0 0] 0.000625;
g g [01 -2 000 0] 9.81;

Manning-Strickler

ManningStrickler
Manning (1890) (wikipedia.org):

[ul”
h1/3.

T/ =n’pg

Parameters:

frictionModel ManningStrickler;
ManningStricklerCoeffs
{

n [000O0O0O0O0] 1.0;

g [01 -2 000 0] 9.81;

Voellmy

Voellmy

https://en.wikipedia.org/wiki/Darcy%E2%80%93Weisbach_equation
https://en.wikipedia.org/wiki/Manning_formula

Friction model following VVoellmy (1955):

Py 2
[T =pp+ 3 |ul
Parameters (see also tutorial wolfsgrube):
frictionModel Voellmy;
VoellmyCoeffs
{
mu mu [0 0O OO OO 0] 0.25;
xi xi [01 -200 0 0] 10000;
}
Kinetic Theory
kt

Simplified Kinetic Theory following Rauter et al. (2016).

2
B pg |u
= up+ = —-
X h
Parameters:
frictionModel kt;
"ktCoeffs"
{
mu mu [0 0O O OO 0] 0.25;
chi chi [0 -1 -2 0 0 0 0] 10000;
}
mu(l)
mul

Popular mu(l) following Jop et al (2006) see also wikipedia.org

Shear rate at the base following Bagnold Profile:

5 [u
TT3h

Inertia number:

d
I—_1%
\/p/ Py
Friction coefficient depending on inertia number:

s Iy /I +1
Basal friction:

[Tl =u(D)p

Parameters (see also tutorial simpleslope):

//parameters for Voellmy

//dry friction coefficient

//voellmy turbulence coefficient

//parameters for simplified KT

//dry friction coefficient

//turbulent friction coefficient

file:///tmp/.org.chromium.Chromium.cyKacv/dx.doi.org/10.5169/seals-61891
https://www.nat-hazards-earth-syst-sci.net/16/2325/2016/
https://en.wikipedia.org/wiki/%CE%9C%28I%29_rheology

frictionModel Mul;

MuICoeffs

{
4 d 010000 0] 0.005; //particle diameter
rho_p rhop [1 -3 0000 0] 2500.; //particle density
mu_s mus [00OOOOOOT7] 0.38; //friction coefficient (low limit)
mu_2 mu 2 [0 0O OOOO] 0.65; //friction coefficient (high limit)
I0 I 0 [00O0O0OOOOT7] 0.30; //reference inertia number

Poliquen Forterre (2008)

PoliquenForterre

First mu(l)-rheology following Pouliquen & Forterre (2002). Similar to muI , however with the parametrisation of
Pouliquen & Forterre (2002). See also Johnson and Gray, (2011).

ol
P = —
vVhg,
B
hstop - h_’)“

tan(¢y) — tan(¢;)
1+hs/L

Hstart = ta‘n(C?)) + (ta’n(CZ) - tan(Cl)) eXp(—hs /L)

:u’stop = tan((l) +

Fr\"’
n = 7 (:ustop - /’l’start) + Wstart

7| =p)p
Parameters:
frictionModel PoliquenForterre;

PoliquenForterreCoeffs

{

L L[0O1000O0OO0OTI1 0.010;
zetal zetal [00 0 0 0001 21;
zeta2 zeta2 [0 0 000001 30.7;
zeta3 zeta3 [00 000001 22.2;
beta beta [00000001 0.136;
gamma gamma [0 0 0 0 0 0 0] le-3;

Entrainment models

The entrainment model has to be set in the file constant/transportProperties (see below).

Entrainment models can be found in the folder faSavagehutterfoam/entrainmentModels . Currently there are the
following available:

No entrainment

entrainmentOoff

http://www.maths.manchester.ac.uk/~ngray/Papers/JFM_675_2011.pdf

choose to turn off entrainment.

Front

Front

Simple front entrainment. Entrainment of the total mountain snow cover within a cell is triggered when h > hm'gger-

Parameters:
entrainmentModel Front;
FrontCoeffs
{
htrigger htrigger [01 0 0 0 0 0] 0.01;

Erosionenergy

Erosionenergy
Entrainment model following SamosAT, see e.g., Rauter et al. (2016).

The entraiment rate ¢ is calculated as

T-1

q =
€b

Parameters:

entrainmentModel Erosionenergy;
ErosionenergyCoeffs
{
eb eb [0 2 -2 0 0 0 0] 11500; //specific erosion energy

Issler (2014)

IsslerFC

Entrainment model following frictional-collisional apporach of Isser (2014) (Apply carefully, not tested in depth).

Medina (2008)

Medina

Entrainment model following the apporach of Medina (2008) (Apply carefully, not tested in depth).

Deposition models

The deposition model has to be set in the file constant/transportProperties (see below).

Deposition models can be found in the folder fasSavagehutterfoam/entrainmentModels (because of the similarity to
entrainment). Currently there is one deposition model available:

No deposition

depositionOff

https://www.nat-hazards-earth-syst-sci.net/16/2325/2016/
https://doi.org/10.1017/jfm.2014.584
https://doi.org/10.1007/s10346-007-0102-3

Choose to turn off deposition.
Stopingprofile
Stopingprofile

Deposition model presented at OpenFOAMWorkshop 12 in Exeter. Otherwise unpublished/unreleased. Based on a
decelerating Bagnold profile (Apply carefully, tested but unreleased/unreviewed).

Function Objects

Some function objects to extend the solvers cabilities are availabe. For general information on function objects in
OpenFOAM, see OpenFOAM User Guide.

Peak dynamic pressure

dynamicpressure

Calculates the dynamic pressure, defined as
— 2
pa () = max (p [a(x,1)|)

in every timestep and writes the peak dynamic pressure (maximum dynamic pressure over time) to harddisk. This is an
important result for many practical applications, see, e.g. Rauter et al. (2016). To calcualate the peak dyanmic
pressure, add the following code to system/controlDict

functions
(
pd
{
type "dynamicpressure";

functionObjectLibs("libfamfunctions.so");

outputControl outputTime; //see OpenFOAM user guide
rho rho [1 -3 00000 1] 200.; //density
hmin hmin [1 0 0 0 00 0] 0.01; //threshold for flow thickness

)

Radar simulation

radar

Simulates an avalanche radar similar to GEODAR (Kohler et al. 2016). To use this function object, add the following
code to system/controlDict

functions
(
radar_sum velocity
{
type "radar";

functionObjectLibs("libfamfunctions.so");

outputControl outputTime; //see OpenFOAM user guide

https://cfd.direct/openfoam/user-guide/v3-function-objects/
https://www.nat-hazards-earth-syst-sci.net/16/2325/2016/
file:///tmp/.org.chromium.Chromium.cyKacv/dx.doi.org/10.1002/2016JF003887

tableOutPut "radar.csv"; //name of output file

intensity "sum_velocity"; //method of calculating intensity
position (595249 126797 1487); //position of the radar

hmin 0; //threshold for flow thickness
xmin 0; //nearest rangegate

Xmax 2500; //furthest rangegate

deltaX 10; //distance between rangegates

log on; //write Log to Stdout

) ;

Secondary slab release

slabs

This function obejct can be used to release scondary slabs at a specific point in time. To use this function object, add
the following code to system/controlDict

functions
(
slabs
{
type "glabs";
functionObjectLibs ("libfamfunctions.so");

slabs //List of slabs
(
slabl //first slab
{
vertices //polygon defining the slab area
(
(593393.82 127694.27 0) //list of points,
(593391.56 127690.3 0) //defining a polygon
(593400.63 127682.64 0) //for the slab
)i
releasetime 7.0; //release time of the slab
}
slab2 //second slab
{
vertices

(
(593578.35 127618.5 0)
(593600.54 127610.85 0)
(593639.56 127598.6 0)

)i

releasetime 20;

)i
outputControl outputTime;

)i

Energy and mass conservation

totalenergy

Calculates the total energy in the system. To use this function object, add the following code to system/controlDict

functions
(
totalEnergy
{
type "totalenergy";

functionObjectLibs("libfamfunctions.so");

outputControl outputTime; //see OpenFOAM user guide
rho rho [1 -3 00000 1] 200.; //density

tableOutPut "energy.csv"; //name of output file

log on; //write Log to Stdout

)

Momentum conservation

totalmomentum

Calculates the total momentum in the system. To use this function object, add the following code to

system/controlDict

functions
(
totalMomentum
{
type "totalenergy";

functionObjectLibs("libfamfunctions.so");

outputControl outputTime; //see OpenFOAM user guide
rho rho [1 -3 00000 1] 200.; //density
log on; //write Log to Stdout

Solver Settings

Simulation Time, Timesteps

Simulation time and time stepping controls can be found in the file system/control . See OpenFOAM User Manual
for details. Most important settings:

e endTime : Time until the solver runs
e writeInterval : Intervalls at which results are saved
e maxCo : Maximum Courant-number. Recommended value is 1.

Initial and Boundary Conditions

Initial and boundary conditions can be set in the files o/h , ©/Us and 0/hentrain , similar as in other OpenFOAM

https://cfd.direct/openfoam/user-guide/controldict/

solver. The tool ReleaseAreaMapping can be used to create appropriate initial conditions.

Transport Properties

Most physical constants can be found in constant/transportProperties . Example:

FoamFile
{
version 2.0;
format ascii;
class dictionary;
location "constant";
object transportProperties;
}
pressureFeedback off; //turn curvature and lateral pressure inte

raction on/off

explicitDryAreas off; //eliminate dry cells in the linear system
rho rho [1 -3 0000 0] 200.; //density
xi xi [00 0O0OO 0] 1; //shape factor is bagnold

hmin hmin [01 0 0 0 0 0] le-6; //binding the hight
u0 u0 [01 -1 00 0 0] 1le-7; //tolerance for velocity
tau0 tau0 [0 2 -1 0 0 0 0] O; //artifical viscosity
ho hO [01 000 0 0] le-4; //hight threshold for friction models
frictionModel Voellmy; //chose your friction model
entrainmentModel Erosionenergy; //chose your entrainment model
depositionModel depositionOff; //chose your deposition model
VoellmyCoeffs //parameters for friction model
{ //herein Voellmy fiction model
mu mu [0 OO O OO 0] 0.25; //dry friction coefficient
xi xi [01 -2 00 0 0] 10000; //voellmy turbulence coefficient

ErosionenergyCoeffs //parameters for entrainment model

{

eb eb [0 2 -2 0 0 0 0] 10000; //specific erosion energy

Numerical Schemes

See system/faSchemes and the OpenFOAM User Manual. Note that this solver is based on the Finite Area Method.
Therefore, the numerical schemes are found in the file faSchemes (instead of fvSchemes).

Numerical Solver

See system/faSolution and the OpenFOAM User Manual. Note that this solver is based on the Finite Area Method.
Therefore, the numerical solution algorithms are found in the file faSolution (instead of fvSolution).

https://cfd.direct/openfoam/user-guide/fvSchemes/
https://cfd.direct/openfoam/user-guide/fvSolution/

Tutorials

All tutorials contain a Allrun script which will conduct all steps required to run a simulation.

stokersdambreak

Example from Rauter and Tukovic (2018), section 6.1.1. This example demonstrates results for Stokers dam break
example.

rittersdambreak

Example from Rauter and Tukovic (2018), section 6.1.2. This example demonstrates results for Ritters dam break
example.

dresslerdambreak

Example from Rauter and Tukovic (2018), section 6.1.3. This example demonstrates results for Dresslers dam break
example.

centrifugalforce

Example from Rauter and Tukovic (2018), section 6.2. This example demonstrates results for the basal pressure due to
centrifugal forces. No friction.

simpleslope
Example from Rauter and Tukovic (2018), section 6.3. This example demonstrates a popular shallow granular flow test
case on a simply curved slope.

(simpleslope_exp)

Same as simpleslope but set up to work with the (experimental) explicit solver (faSavageHutterFoamExp).

wolfsgrube

Example from Rauter, Kofler and Fellin (submitted to GMD).

This tutorial shows the recalculation of a real scale avalanche in Tirol/Austria. Find out more about this avalanche in
Fischer et al. (2015).

This tutorial applies the solver and some tools of this package. Moreover it is using some python scripts which can be
found in the folder scripts .

Running the example:

¢ Preparation.
Change into the respective directory and load foam-extend enviroment:

https://arxiv.org/abs/1802.05229
https://arxiv.org/abs/1802.05229
https://arxiv.org/abs/1802.05229
https://arxiv.org/abs/1802.05229
https://arxiv.org/abs/1802.05229
https://www.geosci-model-dev.net/
https://www.researchgate.net/publication/286843194_Multivariate_parameter_optimization_for_computational_snow_avalanche_simulation

cd ~/foam/faSavagehutterfoam/tutorials/finiteArea/faSavageHutterFoam/wolfsgrube
fed40

¢ Create mesh (using CfMesh).
To create the mesh with CfMesh (pMesh), you can run the script:

./runpMesh.sh

o Alternative: Create structured mesh directly with pyhton (not recommended)
To create the mesh (100 x 200 cells) you can run the script:

./runMesh.sh

There are some other scripts (runMeshFine.sh , runMeshVeryFine.sh) to change the cell count. You can
also edit one of the scripts to adapt it to your needs.

¢ Run the simulation.
To run the simulation on a single core, you can run the script:

./runSim.sh
To run it using MPI you can use the script:

./runSimMPI.sh

o Export results to shape files
To export all results to shape files, run the script:

./runGISExport.sh

Changing some parameters.

Most relevant parameters can be setin constant/transportProperties . Here you can select friction
model, entrainment model, and change parameters.

Changing topography, release area.

To change the topography, look into the script runMesh.sh and modify it.

To change the release area or the release height, look into the script runSim.sh / runsimMPI.sh and modify it. The
release area is creaed in the second and third step. In here we read the release area from a shape file

(rawdata/release.shp). You can also modify the dictionary constant/releaseArea manually.

Trouble Shooting.

If you encounter stability issues or other problems try one of the following:

¢ Reduce relaxing factors in system/faSolution .

¢ Increase iterations and decrease tolerances in system/faSolution .

e Reduce CoMax in system/controlDict .

¢ Change friction model. We observed some problems in the runout zone with Voellmy. Kinetic theory turned out
to be more stable due to the depenence on flow thickness.

e Switch to first order interpolations. First order interpolations are much more stable and run with high relaxing
factors.

e Limit the flow thickness to small value (hmin) in constant/transportProperties

« Contact the author at matthias.rauter@uibk.ac.at

