Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year 4.890
  • CiteScore value: 4.49 CiteScore 4.49
  • SNIP value: 1.539 SNIP 1.539
  • SJR value: 2.404 SJR 2.404
  • IPP value: 4.28 IPP 4.28
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 51 Scimago H index 51
Volume 11, issue 1 | Copyright
Geosci. Model Dev., 11, 305-319, 2018
https://doi.org/10.5194/gmd-11-305-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.

Development and technical paper 23 Jan 2018

Development and technical paper | 23 Jan 2018

Errors and improvements in the use of archived meteorological data for chemical transport modeling: an analysis using GEOS-Chem v11-01 driven by GEOS-5 meteorology

Karen Yu1, Christoph A. Keller2,3, Daniel J. Jacob1,4, Andrea M. Molod3, Sebastian D. Eastham1, and Michael S. Long1 Karen Yu et al.
  • 1School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
  • 2Universities Space Research Association, Columbia, MD, USA
  • 3NASA Goddard Space Flight Center, Greenbelt, MD, USA
  • 4Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA

Abstract. Global simulations of atmospheric chemistry are commonly conducted with off-line chemical transport models (CTMs) driven by archived meteorological data from general circulation models (GCMs). The off-line approach has the advantages of simplicity and expediency, but it incurs errors due to temporal averaging in the meteorological archive and the inability to reproduce the GCM transport algorithms exactly. The CTM simulation is also often conducted at coarser grid resolution than the parent GCM. Here we investigate this cascade of CTM errors by using 222Rn–210Pb–7Be chemical tracer simulations off-line in the GEOS-Chem CTM at rectilinear 0.25° × 0.3125° (≈25km) and 2° × 2.5° (≈200km) resolutions and online in the parent GEOS-5 GCM at cubed-sphere c360 (≈25km) and c48 (≈200km) horizontal resolutions. The c360 GEOS-5 GCM meteorological archive, updated every 3h and remapped to 0.25° × 0.3125°, is the standard operational product generated by the NASA Global Modeling and Assimilation Office (GMAO) and used as input by GEOS-Chem. We find that the GEOS-Chem 222Rn simulation at native 0.25° × 0.3125° resolution is affected by vertical transport errors of up to 20% relative to the GEOS-5 c360 online simulation, in part due to loss of transient organized vertical motions in the GCM (resolved convection) that are temporally averaged out in the 3h meteorological archive. There is also significant error caused by operational remapping of the meteorological archive from a cubed-sphere to a rectilinear grid. Decreasing the GEOS-Chem resolution from 0.25° × 0.3125° to 2° × 2.5° induces further weakening of vertical transport as transient vertical motions are averaged out spatially and temporally. The resulting 222Rn concentrations simulated by the coarse-resolution GEOS-Chem are overestimated by up to 40% in surface air relative to the online c360 simulations and underestimated by up to 40% in the upper troposphere, while the tropospheric lifetimes of 210Pb and 7Be against aerosol deposition are affected by 5–10%. The lost vertical transport in the coarse-resolution GEOS-Chem simulation can be partly restored by recomputing the convective mass fluxes at the appropriate resolution to replace the archived convective mass fluxes and by correcting for bias in the spatial averaging of boundary layer mixing depths.

Download & links
Publications Copernicus
Download
Short summary
Global simulations of atmospheric chemistry are generally conducted with off-line chemical transport models (CTMs) driven by archived meteorological data from general circulation models (GCMs). The off-line approach has the advantages of simplicity and expediency, but it is unable to reproduce the GCM transport exactly. We investigate the cascade of errors associated with the off-line approach using the GEOS-5 GCM and GEOS-Chem CTM and discuss improvements in the use of archived meteorology.
Global simulations of atmospheric chemistry are generally conducted with off-line chemical...
Citation
Share