Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.154 IF 5.154
  • IF 5-year value: 5.697 IF 5-year
    5.697
  • CiteScore value: 5.56 CiteScore
    5.56
  • SNIP value: 1.761 SNIP 1.761
  • IPP value: 5.30 IPP 5.30
  • SJR value: 3.164 SJR 3.164
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 59 Scimago H
    index 59
  • h5-index value: 49 h5-index 49
Volume 11, issue 8
Geosci. Model Dev., 11, 3261–3278, 2018
https://doi.org/10.5194/gmd-11-3261-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: BACCHUS – Impact of Biogenic versus Anthropogenic emissions...

Geosci. Model Dev., 11, 3261–3278, 2018
https://doi.org/10.5194/gmd-11-3261-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.

Model description paper 13 Aug 2018

Model description paper | 13 Aug 2018

A parameterisation for the co-condensation of semi-volatile organics into multiple aerosol particle modes

Matthew Crooks et al.
Related authors  
Uncertainty in aerosol hygroscopicity resulting from semi-volatile organic compounds
Olivia Goulden, Matthew Crooks, and Paul Connolly
Atmos. Chem. Phys., 18, 275–287, https://doi.org/10.5194/acp-18-275-2018,https://doi.org/10.5194/acp-18-275-2018, 2018
Short summary
Equilibrium absorptive partitioning theory between multiple aerosol particle modes
Matthew Crooks, Paul Connolly, David Topping, and Gordon McFiggans
Geosci. Model Dev., 9, 3617–3637, https://doi.org/10.5194/gmd-9-3617-2016,https://doi.org/10.5194/gmd-9-3617-2016, 2016
Short summary
Related subject area  
Atmospheric Sciences
Impact of model improvements on 80 m wind speeds during the second Wind Forecast Improvement Project (WFIP2)
Laura Bianco, Irina V. Djalalova, James M. Wilczak, Joseph B. Olson, Jaymes S. Kenyon, Aditya Choukulkar, Larry K. Berg, Harindra J. S. Fernando, Eric P. Grimit, Raghavendra Krishnamurthy, Julie K. Lundquist, Paytsar Muradyan, Mikhail Pekour, Yelena Pichugina, Mark T. Stoelinga, and David D. Turner
Geosci. Model Dev., 12, 4803–4821, https://doi.org/10.5194/gmd-12-4803-2019,https://doi.org/10.5194/gmd-12-4803-2019, 2019
Short summary
Description and evaluation of the tropospheric aerosol scheme in the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS-AER, cycle 45R1)
Samuel Rémy, Zak Kipling, Johannes Flemming, Olivier Boucher, Pierre Nabat, Martine Michou, Alessio Bozzo, Melanie Ades, Vincent Huijnen, Angela Benedetti, Richard Engelen, Vincent-Henri Peuch, and Jean-Jacques Morcrette
Geosci. Model Dev., 12, 4627–4659, https://doi.org/10.5194/gmd-12-4627-2019,https://doi.org/10.5194/gmd-12-4627-2019, 2019
Short summary
Multimodel simulations of a springtime dust storm over northeastern China: implications of an evaluation of four commonly used air quality models (CMAQ v5.2.1, CAMx v6.50, CHIMERE v2017r4, and WRF-Chem v3.9.1)
Siqi Ma, Xuelei Zhang, Chao Gao, Daniel Q. Tong, Aijun Xiu, Guangjian Wu, Xinyuan Cao, Ling Huang, Hongmei Zhao, Shichun Zhang, Sergio Ibarra-Espinosa, Xin Wang, Xiaolan Li, and Mo Dan
Geosci. Model Dev., 12, 4603–4625, https://doi.org/10.5194/gmd-12-4603-2019,https://doi.org/10.5194/gmd-12-4603-2019, 2019
Short summary
tobac 1.2: towards a flexible framework for tracking and analysis of clouds in diverse datasets
Max Heikenfeld, Peter J. Marinescu, Matthew Christensen, Duncan Watson-Parris, Fabian Senf, Susan C. van den Heever, and Philip Stier
Geosci. Model Dev., 12, 4551–4570, https://doi.org/10.5194/gmd-12-4551-2019,https://doi.org/10.5194/gmd-12-4551-2019, 2019
Short summary
Simulating lightning NO production in CMAQv5.2: performance evaluations
Daiwen Kang, Kristen M. Foley, Rohit Mathur, Shawn J. Roselle, Kenneth E. Pickering, and Dale J. Allen
Geosci. Model Dev., 12, 4409–4424, https://doi.org/10.5194/gmd-12-4409-2019,https://doi.org/10.5194/gmd-12-4409-2019, 2019
Short summary
Cited articles  
Abdul-Razzak, H. and Ghan, S.: A parameterisation for the activation 2. multiple aerosol types, J. Geophys. Res., 105, 6837–6844, 2000.
Abdul-Razzak, H., Ghan, S., and Rivera-Carpio, C.: A parameterisation for the activation 1. single aerosol type, J. Geophys. Res., 103, 6123–6131, 1998.
Allen, J., Dookeran, N., Smith, K., and Sarofim, A.: Measurement of polycyclic aromatic hydrocarbons associated with size-segregated atmospheric aerosols in Massachusetts, Environ. Sci. Technol., 30, 1023–1031, 1996.
Andreae, M. O. and Crutzen, P. J.: Atmospheric aerosols: biogeochemical sources and role in atmospheric chemistry, Science, 276, 1052–1058, 1997.
Barahona, D., West, R. E. L., Stier, P., Romakkaniemi, S., Kokkola, H., and Nenes, A.: Comprehensively accounting for the effect of giant CCN in cloud activation parameterizations, Atmos. Chem. Phys., 10, 2467–2473, https://doi.org/10.5194/acp-10-2467-2010, 2010.
Publications Copernicus
Download
Short summary
Clouds form when water condenses onto particles in the atmosphere and the size and chemical composition of these particles can have a large influence over how much water condenses and the subsequent formation of cloud. Additional gases exist in the atmosphere that can condense onto the aerosol particles and change their composition. We present a fast and efficient method of calculating the effect of atmospheric gases on the formation of cloud that can be used in climate and weather models.
Clouds form when water condenses onto particles in the atmosphere and the size and chemical...
Citation