Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year 4.890
  • CiteScore value: 4.49 CiteScore 4.49
  • SNIP value: 1.539 SNIP 1.539
  • SJR value: 2.404 SJR 2.404
  • IPP value: 4.28 IPP 4.28
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 51 Scimago H index 51
Volume 11, issue 8 | Copyright
Geosci. Model Dev., 11, 3313-3325, 2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Model evaluation paper 21 Aug 2018

Model evaluation paper | 21 Aug 2018

Baseline evaluation of the impact of updates to the MIT Earth System Model on its model parameter estimates

Alex G. Libardoni1, Chris E. Forest1,2, Andrei P. Sokolov3, and Erwan Monier3 Alex G. Libardoni et al.
  • 1Department of Meteorology, Pennsylvania State University, University Park, PA, USA
  • 2Earth and Environmental Systems Institute, Pennsylvania State University, University Park, PA, USA
  • 3Joint Program on the Science and Policy of Global Change, Massachusetts Institute of Technology, Cambridge, MA, USA

Abstract. For over 20 years, the Massachusetts Institute of Technology Earth System Model (MESM) has been used extensively for climate change research. The model is under continuous development with components being added and updated. To provide transparency in the model development, we perform a baseline evaluation by comparing model behavior and properties in the newest version to the previous model version. In particular, changes resulting from updates to the land surface model component and the input forcings used in historical simulations of climate change are investigated. We run an 1800-member ensemble of MESM historical climate simulations where the model parameters that set climate sensitivity, the rate of ocean heat uptake, and the net anthropogenic aerosol forcing are systematically varied. By comparing model output to observed patterns of surface temperature changes and the linear trend in the increase in ocean heat content, we derive probability distributions for the three model parameters. Furthermore, we run a 372-member ensemble of transient climate simulations where all model forcings are fixed and carbon dioxide concentrations are increased at the rate of 1%year−1. From these runs, we derive response surfaces for transient climate response and thermosteric sea level rise as a function of climate sensitivity and ocean heat uptake. We show that the probability distributions shift towards higher climate sensitivities and weaker aerosol forcing when using the new model and that the climate response surfaces are relatively unchanged between model versions. Because the response surfaces are independent of the changes to the model forcings and similar between model versions with different land surface models, we suggest that the change in land surface model has limited impact on the temperature evolution in the model. Thus, we attribute the shifts in parameter estimates to the updated model forcings.

Publications Copernicus
Short summary
We present a transparent method for evaluating how changes to the MIT Earth System Model impact its response to anthropogenic and natural forcings. We tested the effects that changes to both model components and forcings have on the estimates of model parameters that agree with historical observations. Overall, changes to model forcings are more important than the new components, while the long-term model response is unchanged. The methodology serves as a guide for documenting model development.
We present a transparent method for evaluating how changes to the MIT Earth System Model impact...