from sympy import (AdamsBashforth, NetCDFMonitor)
import climt
from datetime import timedelta

Define model timestep in minutes
model_timestep = timedelta(minutes=1)

Create components
radiation = climt.RRTMGLongwave()
convection = climt.EmanuelConvection()
boundary_layer = climt.SimplePhysics()

Create model state
model_state = climt.get_default_state([radiation, convection, boundary_layer])

Create integrator
time_stepper = AdamsBashforth([radiation, convection])

Create monitor
monitor = NetCDFMonitor('radiative_convective.nc')

step model forward
for step in range(10):
 bl_diagnostics, bl_new_state = boundary_layer(model_state, model_timestep)
 model_state.update(bl_diagnostics)
 model_state.update(bl_new_state)

 diagnostics, new_state = time_stepper(model_state, model_timestep)
 model_state.update(diagnostics)
 monitor.store(model_state)
 model_state.update(new_state)
 model_state['time'] += model_timestep