Articles | Volume 11, issue 9
https://doi.org/10.5194/gmd-11-3883-2018
https://doi.org/10.5194/gmd-11-3883-2018
Development and technical paper
 | 
27 Sep 2018
Development and technical paper |  | 27 Sep 2018

LCice 1.0 – a generalized Ice Sheet System Model coupler for LOVECLIM version 1.3: description, sensitivities, and validation with the Glacial Systems Model (GSM version D2017.aug17)

Taimaz Bahadory and Lev Tarasov

Related authors

North American Pleistocene Glacial Erosion and Thin Pliocene Regolith Thickness Inferred from Data-Constrained Fully Coupled Ice-Climate-Sediment modelling
Matthew Drew and Lev Tarasov
EGUsphere, https://doi.org/10.5194/egusphere-2024-620,https://doi.org/10.5194/egusphere-2024-620, 2024
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
The comparative role of physical system processes in Hudson Strait ice stream cycling: a comprehensive model-based test of Heinrich event hypotheses
Kevin Hank and Lev Tarasov
EGUsphere, https://doi.org/10.5194/egusphere-2024-493,https://doi.org/10.5194/egusphere-2024-493, 2024
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Uncertainties originating from GCM downscaling and bias correction with application to the MIS-11c Greenland Ice Sheet
Brian R. Crow, Lev Tarasov, Michael Schulz, and Matthias Prange
Clim. Past, 20, 281–296, https://doi.org/10.5194/cp-20-281-2024,https://doi.org/10.5194/cp-20-281-2024, 2024
Short summary
Surging of a Hudson Strait-scale ice stream: subglacial hydrology matters but the process details mostly do not
Matthew Drew and Lev Tarasov
The Cryosphere, 17, 5391–5415, https://doi.org/10.5194/tc-17-5391-2023,https://doi.org/10.5194/tc-17-5391-2023, 2023
Short summary
A Fast Surrogate Model for 3D-Earth Glacial Isostatic Adjustment using Tensorflow (v2.8.10) Artificial Neural Networks
Ryan Love, Glenn A. Milne, Parviz Ajourlou, Soran Parang, Lev Tarasov, and Konstantin Latychev
EGUsphere, https://doi.org/10.5194/egusphere-2023-2491,https://doi.org/10.5194/egusphere-2023-2491, 2023
Short summary

Related subject area

Climate and Earth system modeling
Interactions between atmospheric composition and climate change – progress in understanding and future opportunities from AerChemMIP, PDRMIP, and RFMIP
Stephanie Fiedler, Vaishali Naik, Fiona M. O'Connor, Christopher J. Smith, Paul Griffiths, Ryan J. Kramer, Toshihiko Takemura, Robert J. Allen, Ulas Im, Matthew Kasoar, Angshuman Modak, Steven Turnock, Apostolos Voulgarakis, Duncan Watson-Parris, Daniel M. Westervelt, Laura J. Wilcox, Alcide Zhao, William J. Collins, Michael Schulz, Gunnar Myhre, and Piers M. Forster
Geosci. Model Dev., 17, 2387–2417, https://doi.org/10.5194/gmd-17-2387-2024,https://doi.org/10.5194/gmd-17-2387-2024, 2024
Short summary
CD-type discretization for sea ice dynamics in FESOM version 2
Sergey Danilov, Carolin Mehlmann, Dmitry Sidorenko, and Qiang Wang
Geosci. Model Dev., 17, 2287–2297, https://doi.org/10.5194/gmd-17-2287-2024,https://doi.org/10.5194/gmd-17-2287-2024, 2024
Short summary
CSDMS Data Components: data–model integration tools for Earth surface processes modeling
Tian Gan, Gregory E. Tucker, Eric W. H. Hutton, Mark D. Piper, Irina Overeem, Albert J. Kettner, Benjamin Campforts, Julia M. Moriarty, Brianna Undzis, Ethan Pierce, and Lynn McCready
Geosci. Model Dev., 17, 2165–2185, https://doi.org/10.5194/gmd-17-2165-2024,https://doi.org/10.5194/gmd-17-2165-2024, 2024
Short summary
A generic algorithm to automatically classify urban fabric according to the local climate zone system: implementation in GeoClimate 0.0.1 and application to French cities
Jérémy Bernard, Erwan Bocher, Matthieu Gousseff, François Leconte, and Elisabeth Le Saux Wiederhold
Geosci. Model Dev., 17, 2077–2116, https://doi.org/10.5194/gmd-17-2077-2024,https://doi.org/10.5194/gmd-17-2077-2024, 2024
Short summary
Modelling water isotopologues (1H2H16O, 1H217O) in the coupled numerical climate model iLOVECLIM (version 1.1.5)
Thomas Extier, Thibaut Caley, and Didier M. Roche
Geosci. Model Dev., 17, 2117–2139, https://doi.org/10.5194/gmd-17-2117-2024,https://doi.org/10.5194/gmd-17-2117-2024, 2024
Short summary

Cited articles

Arnold, N. S., Rees, W. G., Hodson, A. J., and Kohler, J.: Topographic controls on the surface energy balance of a high Arctic valley glacier, J. Geophys. Res.-Earth Surf., 111, F02011, https://doi.org/10.1029/2005JF000426, 2006. a, b
Bahadory, T. and Tarasov, L.: LCice 1.0: A generalized Ice Sheet Systems Model coupler for LOVECLIM version 1.3, Zenodo, available at: http://doi.org/10.5281/zenodo.1409282, last access: 21 September 2018. 
Balmaseda, M. A., Vidard, A., and Anderson, D. L. T.: The ECMWF Ocean Analysis System: ORA-S3, Mon. Weather Rev., 136, 3018–3034, https://doi.org/10.1175/2008MWR2433.1, 2008. a, b
Bassford, R., Siegert, M., and Dowdeswell, J.: Quantifying the mass balance of ice caps on Severnaya Zemlya, Russian High Arctic. II: Modeling the flow of the Vavilov Ice Cap under the present climate, Arct. Antarct. Alpine Res., 38, 13–20, 2006a. a
Bassford, R., Siegert, M., Dowdeswell, J., Oerlemans, J., Glazovsky, A., and Macheret, Y.: Quantifying the mass balance of ice caps on Severnaya Zemlya, Russian High Arctic. I: Climate and mass balance of the Vavilov Ice Cap, Arct. Antarct. Alpine Res., 38, 1–12, 2006b. a
Download
Short summary
We describe a new coupling between the Glacial Systems Model and the LOVECLIM intermediate complexity climate model. The coupling is distinguished from that of previous studies by greater completeness and accuracy, with the intent of capturing the major feedbacks between ice sheets and climate on glacial cycle timescales. The fully coupled model will be used to examine the ice/climate phase space of past glacial cycles.