Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.154 IF 5.154
  • IF 5-year value: 5.697 IF 5-year
    5.697
  • CiteScore value: 5.56 CiteScore
    5.56
  • SNIP value: 1.761 SNIP 1.761
  • IPP value: 5.30 IPP 5.30
  • SJR value: 3.164 SJR 3.164
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 59 Scimago H
    index 59
  • h5-index value: 49 h5-index 49
GMD | Articles | Volume 11, issue 10
Geosci. Model Dev., 11, 4069–4084, 2018
https://doi.org/10.5194/gmd-11-4069-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Geosci. Model Dev., 11, 4069–4084, 2018
https://doi.org/10.5194/gmd-11-4069-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Model evaluation paper 10 Oct 2018

Model evaluation paper | 10 Oct 2018

Comparison of dealiasing schemes in large-eddy simulation of neutrally stratified atmospheric flows

Fabien Margairaz et al.
Viewed  
Total article views: 933 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
629 271 33 933 20 35
  • HTML: 629
  • PDF: 271
  • XML: 33
  • Total: 933
  • BibTeX: 20
  • EndNote: 35
Views and downloads (calculated since 17 Nov 2017)
Cumulative views and downloads (calculated since 17 Nov 2017)
Viewed (geographical distribution)  
Total article views: 893 (including HTML, PDF, and XML) Thereof 884 with geography defined and 9 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited  
Saved (final revised paper)  
No saved metrics found.
Saved (discussion paper)  
No saved metrics found.
Discussed (final revised paper)  
No discussed metrics found.
Discussed (discussion paper)  
No discussed metrics found.
Latest update: 21 Aug 2019
Publications Copernicus
Download
Short summary
In this project, we compare three different approaches to integrate the fluid-motion equations when applied to solve atmospheric flow dynamics. Differences between the three methods reside in accuracy as well as computational cost. The results illustrate that there is an intermediate solution that performs well in terms of computational cost while at the same time producing good enough results, as long one is not interested in the smallest turbulent scales.
In this project, we compare three different approaches to integrate the fluid-motion equations...
Citation