Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.154 IF 5.154
  • IF 5-year value: 5.697 IF 5-year
    5.697
  • CiteScore value: 5.56 CiteScore
    5.56
  • SNIP value: 1.761 SNIP 1.761
  • IPP value: 5.30 IPP 5.30
  • SJR value: 3.164 SJR 3.164
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 59 Scimago H
    index 59
  • h5-index value: 49 h5-index 49
GMD | Articles | Volume 11, issue 10
Geosci. Model Dev., 11, 4195-4214, 2018
https://doi.org/10.5194/gmd-11-4195-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Geosci. Model Dev., 11, 4195-4214, 2018
https://doi.org/10.5194/gmd-11-4195-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Methods for assessment of models 16 Oct 2018

Methods for assessment of models | 16 Oct 2018

(GO)2-SIM: a GCM-oriented ground-observation forward-simulator framework for objective evaluation of cloud and precipitation phase

Katia Lamer et al.
Related authors  
Characterization of Shallow Oceanic Precipitation using Profiling and Scanning Radar Observations at the Eastern North Atlantic ARM Observatory
Katia Lamer, Bernat Puigdomènech Treserras, Zeen Zhu, Bradley Isom, Nitin Bharadwaj, and Pavlos Kollias
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-160,https://doi.org/10.5194/amt-2019-160, 2019
Manuscript under review for AMT
Short summary
Related subject area  
Atmospheric Sciences
Chemistry and deposition in the Model of Atmospheric composition at Global and Regional scales using Inversion Techniques for Trace gas Emissions (MAGRITTE v1.1) – Part 1: Chemical mechanism
Jean-François Müller, Trissevgeni Stavrakou, and Jozef Peeters
Geosci. Model Dev., 12, 2307-2356, https://doi.org/10.5194/gmd-12-2307-2019,https://doi.org/10.5194/gmd-12-2307-2019, 2019
Short summary
The Matsuno baroclinic wave test case
Ofer Shamir, Itamar Yacoby, Shlomi Ziskin Ziv, and Nathan Paldor
Geosci. Model Dev., 12, 2181-2193, https://doi.org/10.5194/gmd-12-2181-2019,https://doi.org/10.5194/gmd-12-2181-2019, 2019
Short summary
Development and evaluation of pollen source methodologies for the Victorian Grass Pollen Emissions Module VGPEM1.0
Kathryn M. Emmerson, Jeremy D. Silver, Edward Newbigin, Edwin R. Lampugnani, Cenk Suphioglu, Alan Wain, and Elizabeth Ebert
Geosci. Model Dev., 12, 2195-2214, https://doi.org/10.5194/gmd-12-2195-2019,https://doi.org/10.5194/gmd-12-2195-2019, 2019
Short summary
Convective response to large-scale forcing in the tropical western Pacific simulated by spCAM5 and CanAM4.3
Toni Mitovski, Jason N. S. Cole, Norman A. McFarlane, Knut von Salzen, and Guang J. Zhang
Geosci. Model Dev., 12, 2107-2117, https://doi.org/10.5194/gmd-12-2107-2019,https://doi.org/10.5194/gmd-12-2107-2019, 2019
Short summary
Atmospheric boundary layer dynamics from balloon soundings worldwide: CLASS4GL v1.0
Hendrik Wouters, Irina Y. Petrova, Chiel C. van Heerwaarden, Jordi Vilà-Guerau de Arellano, Adriaan J. Teuling, Vicky Meulenberg, Joseph A. Santanello, and Diego G. Miralles
Geosci. Model Dev., 12, 2139-2153, https://doi.org/10.5194/gmd-12-2139-2019,https://doi.org/10.5194/gmd-12-2139-2019, 2019
Short summary
Cited articles  
Atlas, D.: The estimation of cloud parameters by radar, J. Meteorol., 11, 309–317, 1954. 
Atlas, D., Matrosov, S. Y., Heymsfield, A. J., Chou, M.-D., and Wolff, D. B.: Radar and radiation properties of ice clouds, J. Appl. Meteorol., 34, 2329–2345, 1995. 
Battaglia, A. and Delanoë, J.: Synergies and complementarities of CloudSat-CALIPSO snow observations, J. Geophys. Res.-Atmos., 118, 721–731, 2013. 
Battan, L. J.: Radar observation of the atmosphere, University of Chicago, Chicago, Illinois, 1973. 
Bodas-Salcedo, A., Webb, M., Bony, S., Chepfer, H., Dufresne, J.-L., Klein, S., Zhang, Y., Marchand, R., Haynes, J., and Pincus, R.: COSP: Satellite simulation software for model assessment, B. Am. Meteorol. Soc., 92, 1023–1043, 2011. 
Publications Copernicus
Download
Short summary
Weather and climate predictions of cloud, rain, and snow occurrence remain uncertain, in part because guidance from observation is incomplete. We present a tool that transforms predictions into observations from ground-based remote sensors. Liquid water and ice occurrence errors associated with the transformation are below 8 %, with ~ 3 % uncertainty. This (GO)2-SIM forward-simulator tool enables better evaluation of cloud, rain, and snow occurrence predictions using available observations.
Weather and climate predictions of cloud, rain, and snow occurrence remain uncertain, in part...
Citation