Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.154 IF 5.154
  • IF 5-year value: 5.697 IF 5-year
    5.697
  • CiteScore value: 5.56 CiteScore
    5.56
  • SNIP value: 1.761 SNIP 1.761
  • IPP value: 5.30 IPP 5.30
  • SJR value: 3.164 SJR 3.164
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 59 Scimago H
    index 59
  • h5-index value: 49 h5-index 49
Volume 11, issue 10
Geosci. Model Dev., 11, 4291–4316, 2018
https://doi.org/10.5194/gmd-11-4291-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Geosci. Model Dev., 11, 4291–4316, 2018
https://doi.org/10.5194/gmd-11-4291-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Development and technical paper 19 Oct 2018

Development and technical paper | 19 Oct 2018

Dynamic hydrological discharge modelling for coupled climate model simulations of the last glacial cycle: the MPI-DynamicHD model version 3.0

Thomas Riddick et al.
Data sets

Dynamic HD Model Relative Orography Corrections Thomas Riddick https://doi.org/10.5281/zenodo.1326394

Model code and software

MPI-DynamicHD Model Thomas Riddick https://doi.org/10.5281/zenodo.1326547

Publications Copernicus
Download
Short summary
During the Last Glacial Maximum, many rivers were blocked by the presence of large ice sheets and thus found new routes to the sea. This resulted in changes in the pattern of freshwater discharge into the oceans and thus would have significantly affected ocean circulation. Also, rivers found routes across the vast exposed continental shelves to the lower coastlines of that time. We propose a model for such changes in river routing suitable for use in wider models of the last glacial cycle.
During the Last Glacial Maximum, many rivers were blocked by the presence of large ice sheets...
Citation