Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year 4.890
  • CiteScore value: 4.49 CiteScore 4.49
  • SNIP value: 1.539 SNIP 1.539
  • SJR value: 2.404 SJR 2.404
  • IPP value: 4.28 IPP 4.28
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 51 Scimago H index 51
Volume 11, issue 10 | Copyright
Geosci. Model Dev., 11, 4317-4337, 2018
https://doi.org/10.5194/gmd-11-4317-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Development and technical paper 19 Oct 2018

Development and technical paper | 19 Oct 2018

Development of an automatic delineation of cliff top and toe on very irregular planform coastlines (CliffMetrics v1.0)

Andres Payo1, Bismarck Jigena Antelo2, Martin Hurst3, Monica Palaseanu-Lovejoy4, Chris Williams1, Gareth Jenkins1, Kathryn Lee1, David Favis-Mortlock5, Andrew Barkwith1, and Michael A. Ellis2 Andres Payo et al.
  • 1British Geological Survey, Keyworth, NG12 5GG, UK
  • 2Cadiz University, Puerto Real, 11510, Spain
  • 3University of Glasgow, East Quad, Glasgow, G12 8QQ, UK
  • 4U.S. Geological Survey, Geology, Minerals, Energy and Geophysics Science Center, Reston, VA 20191, USA
  • 5Environmental Change Institute, Oxford University Centre for the Environment, Oxford, OX1 3QY, UK

Abstract. We describe a new algorithm that automatically delineates the cliff top and toe of a cliffed coastline from a digital elevation model (DEM). The algorithm builds upon existing methods but is specifically designed to resolve very irregular planform coastlines with many bays and capes, such as parts of the coastline of Great Britain. The algorithm automatically and sequentially delineates and smooths shoreline vectors, generates orthogonal transects and elevation profiles with a minimum spacing equal to the DEM resolution, and extracts the position and elevation of the cliff top and toe. Outputs include the non-smoothed raster and smoothed vector coastlines, normals to the coastline (as vector shape files), xyz profiles (as comma-separated-value, CSV, files), and the cliff top and toe (as point shape files). The algorithm also automatically assesses the quality of the profile and omits low-quality profiles (i.e. extraction of cliff top and toe is not possible). The performance of the proposed algorithm is compared with an existing method, which was not specifically designed for very irregular coastlines, and to manually digitized boundaries by numerous professionals. Also, we assess the reproducibility of the results using different DEM resolutions (5, 10 and 50m), different user-defined parameter sets related to the degree of coastline smoothing, and the threshold used to identify the cliff top and toe. The model output sensitivity is found to be smaller than the manually digitized uncertainty. The code and a manual are publicly available on a GitHub repository.

Publications Copernicus
Download
Short summary
We describe a new algorithm that automatically delineates the cliff top and toe of a cliffed coastline from a digital elevation model (DEM). The algorithm builds upon existing methods but is specifically designed to resolve very irregular planform coastlines with many bays and capes, such as parts of the coastline of Great Britain.
We describe a new algorithm that automatically delineates the cliff top and toe of a cliffed...
Citation
Share