Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year 4.890
  • CiteScore value: 4.49 CiteScore 4.49
  • SNIP value: 1.539 SNIP 1.539
  • SJR value: 2.404 SJR 2.404
  • IPP value: 4.28 IPP 4.28
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 51 Scimago H index 51
Volume 11, issue 11 | Copyright
Geosci. Model Dev., 11, 4383-4397, 2018
https://doi.org/10.5194/gmd-11-4383-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Development and technical paper 01 Nov 2018

Development and technical paper | 01 Nov 2018

Bayesian earthquake dating and seismic hazard assessment using chlorine-36 measurements (BED v1)

Joakim Beck1, Sören Wolfers1, and Gerald P. Roberts2 Joakim Beck et al.
  • 1Computer, Electrical and Mathematical Sciences & Engineering (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
  • 2Department of Earth and Planetary Sciences, Birkbeck College, University of London, WC1E 7HX, UK

Abstract. Over the past 20 years, analyzing the abundance of the isotope chlorine-36 (36Cl) has emerged as a popular tool for geologic dating. In particular, it has been observed that 36Cl measurements along a fault plane can be used to study the timings of past ground displacements during earthquakes, which in turn can be used to improve existing seismic hazard assessment. This approach requires accurate simulations of 36Cl accumulation for a set of fault-scarp rock samples, which are progressively exhumed during earthquakes, in order to infer displacement histories from 36Cl measurements. While the physical models underlying such simulations have continuously been improved, the inverse problem of recovering displacement histories from 36Cl measurements is still mostly solved on an ad hoc basis. The current work resolves this situation by providing a MATLAB implementation of a fast, automatic, and flexible Bayesian Markov-chain Monte Carlo algorithm for the inverse problem, and provides a validation of the 36Cl approach to inference of earthquakes from the demise of the Last Glacial Maximum until present. To demonstrate its performance, we apply our algorithm to a synthetic case to verify identifiability, and to the Fiamignano and Frattura faults in the Italian Apennines in order to infer their earthquake displacement histories and to provide seismic hazard assessments. The results suggest high variability in slip rates for both faults, and large displacements on the Fiamignano fault at times when the Colosseum and other ancient buildings in Rome were damaged.

Publications Copernicus
Download
Short summary
Seismic hazard assessment requires records of earthquake recurrence with many slip events. Current data from paleoseismology on individual faults are sparse and do not provide stable estimates of earthquake recurrence. We propose a statistical model-based method to study timings of earthquakes over the past few millennia. The results agree with historical earthquakes for faults in the Italian Apennines, and can aid future studies of fault interactions over multiple earthquake cycles.
Seismic hazard assessment requires records of earthquake recurrence with many slip events....
Citation
Share