Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year 4.890
  • CiteScore value: 4.49 CiteScore 4.49
  • SNIP value: 1.539 SNIP 1.539
  • SJR value: 2.404 SJR 2.404
  • IPP value: 4.28 IPP 4.28
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 51 Scimago H index 51
Volume 11, issue 11 | Copyright
Geosci. Model Dev., 11, 4451-4467, 2018
https://doi.org/10.5194/gmd-11-4451-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Development and technical paper 05 Nov 2018

Development and technical paper | 05 Nov 2018

Implementing spatially explicit wind-driven seed and pollen dispersal in the individual-based larch simulation model: LAVESI-WIND 1.0

Stefan Kruse1, Alexander Gerdes1,2, Nadja J. Kath3, and Ulrike Herzschuh1,3,4 Stefan Kruse et al.
  • 1Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Research Unit Potsdam, Telegrafenberg A43, 14473 Potsdam, Germany
  • 2Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany
  • 3Institute of Biology and Biochemistry, University of Potsdam, 14476 Potsdam, Germany
  • 4Institute of Earth and Environmental Science, University of Potsdam, 14476 Potsdam, Germany

Abstract. It is of major interest to estimate the feedback of arctic ecosystems to the global warming we expect in upcoming decades. The speed of this response is driven by the potential of species to migrate, tracking their climate optimum. For this, sessile plants have to produce and disperse seeds to newly available habitats, and pollination of ovules is needed for the seeds to be viable. These two processes are also the vectors that pass genetic information through a population. A restricted exchange among subpopulations might lead to a maladapted population due to diversity losses. Hence, a realistic implementation of these dispersal processes into a simulation model would allow an assessment of the importance of diversity for the migration of plant species in various environments worldwide. To date, dynamic global vegetation models have been optimized for a global application and overestimate the migration of biome shifts in currently warming temperatures. We hypothesize that this is caused by neglecting important fine-scale processes, which are necessary to estimate realistic vegetation trajectories. Recently, we built and parameterized a simulation model LAVESI for larches that dominate the latitudinal treelines in the northernmost areas of Siberia. In this study, we updated the vegetation model by including seed and pollen dispersal driven by wind speed and direction. The seed dispersal is modelled as a ballistic flight, and for the pollination of ovules of seeds produced, we implemented a wind-determined and distance-dependent probability distribution function using a von Mises distribution to select the pollen donor. A local sensitivity analysis of both processes supported the robustness of the model's results to the parameterization, although it highlighted the importance of recruitment and seed dispersal traits for migration rates. This individual-based and spatially explicit implementation of both dispersal processes makes it easily feasible to inherit plant traits and genetic information to assess the impact of migration processes on the genetics. Finally, we suggest how the final model can be applied to substantially help in unveiling the important drivers of migration dynamics and, with this, guide the improvement of recent global vegetation models.

Publications Copernicus
Download
Short summary
It is of major interest to estimate feedbacks of arctic ecosystems to global warming in the upcoming decades. However, the speed of this response is driven by the potential of species to migrate and the timing and spatial scale for this is rather uncertain. To close this knowledge gap, we updated a very detailed vegetation model by including seed and pollen dispersal driven by wind speed and direction. The new model can substantially help in unveiling the important drivers of migration dynamics.
It is of major interest to estimate feedbacks of arctic ecosystems to global warming in the...
Citation
Share