Abramowitz, G., Leuning, R., Clark, M., and Pitman, A.: Evaluating the
performance of land surface Models, J. Clim., 21, 5468–5481,
https://doi.org/10.1175/2008JCLI2378.1, 2008.
Alcalá, F. J., Cantón, Y., Contreras, S., Were, A., Serrano-Ortiz,
P., Puigdefábregas, J., Solé-Benet, A., Custodio, E., and Domingo,
F.: Diffuse and concentrated recharge evaluation using physical and tracer
techniques: results from a semiarid carbonate massif aquifer in southeastern
Spain, Environ. Earth Sci., 62, 541–557, https://doi.org/10.1007/s12665-010-0546-y,
2011.
Allen, R. G., Pereira, L. S., Raes, D. and Smith, M.: Crop
evapotranspiration: Guidelines for computing crop requirements, FAO
Irrigation and Drainage Paper 56, Food and Agriculture Organization (FAO),
Rome, Italy, 1998.
Allen, R. G., Pruitt, W. O., Wright, J. L., Howell, T. A., Ventura, F.,
Snyder, R., Itenfisu, D., Steduto, P., Berengena, J., and Yrisarry, J. B.: A
recommendation on standardized surface resistance for hourly calculation of
reference ETo by the FAO56 Penman-Monteith method, Agric. Water Manag., 81,
1–22, https://doi.org/10.1016/j.agwat.2005.03.007, 2006.
Arbel, Y., Greenbaum, N., Lange, J., and Inbar, M.: Infiltration processes
and flow rates in developed karst vadose zone using tracers in cave drips,
Earth Surf. Process. Landforms, 35, 1682–1693, https://doi.org/10.1002/esp.2010, 2010.
Archfield, S. A., Clark, M., Arheimer, B., Hay, L. E., McMillan, H., Kiang,
J. E., Seibert, J., Hakala, K., Bock, A., Wagener, T., Farmer, W. H.,
Andréassian, V., Attinger, S., Viglione, A., Knight, R., Markstrom, S.,
and Over, T.: Accelerating advances in continental domain hydrologic
modeling, Water Resour. Res., 51, 10078–10091, https://doi.org/10.1002/2015WR017498,
2015.
Arnell, N. W.: A simple water balance model for the simulation of streamflow
over a large geographic domain, J. Hydrol., 217, 314–335,
https://doi.org/10.1016/S0022-1694(99)00023-2, 1999.
Atkinson, S. E., Woods, R. A., and Sivapalan, M.: Climate and landscape
controls on water balance model complexity over changing timescales, Water
Resour. Res., 38, 1314, https://doi.org/10.1029/2002WR001487, 2002.
Bai, P., Liu, X., Liang, K., and Liu, C.: Comparison of performance of twelve
monthly water balance models in different climatic catchments of China, J.
Hydrol., 529, 1030–1040, https://doi.org/10.1016/j.jhydrol.2015.09.015, 2015.
Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S.,
Anthoni, P., Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein, A.,
Katul, G., Law, B., Lee, X., Malhi, Y., Meyers, T., Munger, W., Oechel, W.,
Paw, K. T., Pilegaard, K., Schmid, H. P., Valentini, R., Verma, S., Vesala,
T., Wilson, K., and Wofsy, S.: FLUXNET: A New Tool to Study the Temporal and
Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and
Energy Flux Densities, B. Am. Meteorol. Soc., 82, 2415–2434,
https://doi.org/10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2, 2001.
Bargués Tobella, A., Reese, H., Almaw, A., Bayala, J., Malmer, A.,
Laudon, H., and Ilstedt, U.: The effect of trees on preferential flow and
soil infiltrability in an agroforestry parkland in semiarid Burkina Faso,
Water Resour. Res., 50, 3342–3354, https://doi.org/10.1002/2013WR015197, 2014.
Beven, K. and Germann, P.: Macropores and water flow in soils revisited,
Water Resour. Res., 49, 3071–3092, https://doi.org/10.1002/wrcr.20156, 2013.
Beven, K. J. and Cloke, H. L.: Comment on “hyperresolution global land
surface modeling: Meeting a grand challenge for monitoring Earth's
terrestrial water” by Eric F. Wood et al., Water Resour. Res., 48, W01801,
https://doi.org/10.1029/2010WR010090, 2012.
Bierkens, M. F. P.: Global hydrology 2015: State, trends, and directions,
Water Resour. Res., 51, 4923–4947, https://doi.org/10.1002/2015WR017173, 2015.
Blume, H.-P., Brümmer, G. W., Horn, R., Kandeler, E., Kögel-Knabner,
I., Kretzschmar, R., Stahr, K., and Wilke, B.-M.: Lehrbuch der Bodenkunde,
Springer-Verlag, Berlin Heidelberg, https://doi.org/10.1007/978-3-662-49960-3., 2010.
Bohn, T. J. and Vivoni, E. R.: Process-based characterization of
evapotranspiration sources over the North American monsoon region, Water
Resour. Res., 52, 358–384, https://doi.org/10.1002/2015WR017934, 2016.
Boone, A., Calvet, J.-C., and Noilhan, J.: Inclusion of a third soil layer in
a land surface scheme using the force–restore method, J. Appl. Meteorol.,
38, 1611–1630, https://doi.org/10.1175/1520-0450(1999)038<1611:IOATSL>2.0.CO;2, 1999.
Botter, G., Porporato, A., Rodriguez-Iturbe, I., and Rinaldo, A.: Nonlinear
storage-discharge relations and catchment streamflow regimes, Water Resour.
Res., 45, W10427, https://doi.org/10.1029/2008WR007658, 2009.
Brown, A. E., Zhang, L., Mcmahon, T. A., Western, A. W., and Vertessy, R. A.:
A review of paired catchment studies for determining changes in water yield
resulting from alterations in vegetation, J. Hydrol., 310, 28–61,
https://doi.org/10.1016/j.jhydrol.2004.12.010, 2005.
Calder, I. R. (Ed.): Evaporation in the Uplands, John Wiley & Sons Ltd.,
Chichester, UK, 1990.
Campolongo, F., Cariboni, J., and Saltelli, A.: An effective screening design
for sensitivity analysis of large models, Environ. Model. Softw., 22,
1509–1518, https://doi.org/10.1016/j.envsoft.2006.10.004, 2007.
Campolongo, F., Saltelli, A., and Cariboni, J.: From screening to
quantitative sensitivity analysis. A unified approach, Comput. Phys. Commun.,
182, 978–988, https://doi.org/10.1016/j.cpc.2010.12.039, 2011.
Canora, F., Fidelibus, M. D., Sciortino, A., and Spilotro, G.: Variation of
infiltration rate through karstic surfaces due to land use changes: A case
study in Murgia (SE-Italy), Eng. Geol., 99, 210–227,
https://doi.org/10.1016/j.enggeo.2007.11.018, 2008.
Cantón, Y., Villagarcía, L., José Moro, M., Serrano-Ortíz,
P., Were, A., Javier Alcalá, F., Kowalski, A. S., Solé-Benet, A.,
Lázaro, R., and Domingo, F.: Temporal dynamics of soil water balance
components in a karst range in southeastern Spain: estimation of potential
recharge, Hydrol. Sci. J., 55, 737–753, https://doi.org/10.1080/02626667.2010.490530,
2010.
Chaney, N. W., Herman, J. D., Ek, M. B., and Wood, E. F.: Deriving global
parameter estimates for the Noah land surface model using FLUXNET and machine
learning, J. Geophys. Res., 121, 13218–13235, https://doi.org/10.1002/2016JD024821,
2016.
Chen, Z., Auler, A. S., Bakalowicz, M., Drew, D., Griger, F., Hartmann, J.,
Jiang, G., Moosdorf, N., Richts, A., Stevanovic, Z., Veni, G., and
Goldscheider, N.: The World Karst Aquifer Mapping project: concept, mapping
procedure and map of Europe, Hydrogeol. J., 25, 771–785,
https://doi.org/10.1007/s10040-016-1519-3, 2017.
Clapp, R. B. and Hornberger, G. M.: Empirical equations for some soil
hydraulic properties, Water Resour. Res., 14, 601–604,
https://doi.org/10.1029/WR014i004p00601, 1978.
Contreras, S., Boer, M. M., Alcala, F. J., Domingo, F., Garcia, M.,
Pulido-Bosch, A., and Puigdefabregas, J.: An ecohydrological modelling
approach for assessing long-term recharge rates in semiarid karstic
landscapes, J. Hydrol., 351, 42–57, https://doi.org/10.1016/j.jhydrol.2007.11.039, 2008.
COST: Cost action 65 – Hydrogeological aspects of groundwater protection in
karstic areas, Report EUR 16547, European Commission, Directorate-General XII
Science, Research Development, Luxembourg, 1995.
Coxon, C.: Agriculture and Karst, in Karst Management, edited by van Beynen,
P. E., Springer Netherlands, Dordrecht, 103–138, 2011.
Cuntz, M., Mai, J., Samaniego, L., Clark, M., Wulfmeyer, V., Branch, O.,
Attinger, S., and Thober, S.: The impact of standard and hard-coded
parameters on the hydrologic fluxes in the Noah-MP land surface model, J.
Geophys. Res., 121, 10676–10700, https://doi.org/10.1002/2016JD025097, 2016.
Cuthbert, M. O., Mackay, R., and Nimmo, J. R.: Linking soil moisture balance
and source-responsive models to estimate diffuse and preferential components
of groundwater recharge, Hydrol. Earth Syst. Sci., 17, 1003–1019,
https://doi.org/10.5194/hess-17-1003-2013, 2013.
DeFries, R. and Eshleman, K. N.: Land-use change and hydrologic processes?: a
major focus for the future, Hydrol. Process., 18, 2183–2186,
https://doi.org/10.1002/hyp.5584, 2004.
De Groen, M. M.: Modelling interception and transpiration at monthly time
steps?: introducing daily variability through Markov chains, PhD thesis,
Delft University of Technology, Delft, the Netherlands, ISBN: 9058093786,
2002.
Döll, P. and Fiedler, K.: Global-scale modeling of groundwater recharge,
Hydrol. Earth Syst. Sci., 12, 863–885,
https://doi.org/10.5194/hess-12-863-2008, 2008.
Döll, P., Kaspar, F., and Lehner, B.: A global hydrological model for
deriving water availability indicators: Model tuning and validation, J.
Hydrol., 270, 105–134, https://doi.org/10.1016/S0022-1694(02)00283-4, 2003.
Doummar, J., Sauter, M., and Geyer, T.: Simulation of flow processes in a
large scale karst system with an integrated catchment model (Mike She) –
Identification of relevant parameters influencing spring discharge, J.
Hydrol., 426–427, 112–123, https://doi.org/10.1016/j.jhydrol.2012.01.021, 2012.
Ecofor: Site atelier de Font Blanche, available at:
http://www.gip-ecofor.org/f-ore-t/fontBlanche.php, last access: 13
December 2017.
Falkenmark, M. and Rockström, J.: The new blue and green water paradigm?:
breaking new ground for water resources planning and management, J. Water
Resour. Plan. Manag., 132, 129–132,
https://doi.org/10.1061/(ASCE)0733-9496(2006)132:3(129), 2006.
Federer, C. A.: Transpirational Supply and Demand: plant, soil, and
atmospheric effects evaluated by simulation, Water Resour. Res., 18,
355–362, https://doi.org/10.1029/WR018i002p00355, 1982.
Federer, C. A., Vörösmarty, C., and Fekete, B.: Sensitivity of Annual
Evaporation to Soil and Root Properties in Two Models of Contrasting
Complexity, J. Hydrometeorol., 4, 1276–1290,
https://doi.org/10.1175/1525-7541(2003)004<1276:SOAETS>2.0.CO;2, 2003.
Fleury, P., Plagnes, V., and Bakalowicz, M.: Modelling of the functioning of
karst aquifers with a reservoir model?: Application to Fontaine de Vaucluse
(South of France), J. Hydrol., 345, 38–49,
https://doi.org/10.1016/j.jhydrol.2007.07.014, 2007.
Foken, T., Leuning, R., Oncley, S. R., Mauder, M., and Aubinet, M.:
Corrections and Data Quality Control, in Eddy Covariance: A Practical Guide
to Measurement and Data Analysis, edited by: Aubinet, M., Vesala, T., and
Papale D., Springer Netherlands, Dordrecht, 85–131, 2012.
Ford, D. and Williams, P. (Eds.): Karst Hydrogeology and Geomorphology, John
Wiley & Sons Ltd., Chichester, UK, 2007.
Gash, J. H. C.: An analytical model of rainfall interception by forests, Q.
J. Roy. Meteor. Soc., 105, 43–55, https://doi.org/10.1002/qj.49710544304, 1979.
Gea-Izquierdo, G., Guibal, F., Joffre, R., Ourcival, J. M., Simioni, G., and
Guiot, J.: Modelling the climatic drivers determining photosynthesis and
carbon allocation in evergreen Mediterranean forests using multiproxy long
time series, Biogeosciences, 12, 3695–3712,
https://doi.org/10.5194/bg-12-3695-2015, 2015.
Gerrits, M.: The role of interception in the hydrological cycle, PhD thesis,
Delft University of Technology, Delft, the Netherlands, available at:
https://repository.tudelft.nl/islandora/object/uuid:7dd2523b-2169-4e7e-992c-365d2294d02e?collection=research
(last access: 30 November 2018), 2010.
Gerten, D., Schaphoff, S., Haberlandt, U., Lucht, W., and Sitch, S.:
Terrestrial vegetation and water balance – Hydrological evaluation of a
dynamic global vegetation model, J. Hydrol., 286, 249–270,
https://doi.org/10.1016/j.jhydrol.2003.09.029, 2004.
Gosling, S. N. and Arnell, N. W.: Simulating current global river runoff with
a global hydrological model: Model revisions, validation, and sensitivity
analysis, Hydrol. Process., 25, 1129–1145, https://doi.org/10.1002/hyp.7727, 2011.
Güntner, A., Stuck, J., Werth, S., Döll, P., Verzano, K., and Merz,
B.: A global analysis of temporal and spatial variations in continental water
storage, Water Resour. Res., 43, W05416, https://doi.org/10.1029/2006WR005247, 2007.
Hao, Y., Yeh, T. C. J., Gao, Z., Wang, Y., and Zhao, Y.: A gray system model
for studying the response to climatic change: The Liulin karst springs,
China, J. Hydrol., 328, 668–676, https://doi.org/10.1016/j.jhydrol.2006.01.022, 2006.
Hargreaves, G. H. and Samani, Z. A.: Reference crop evapotranspiration from
temperature, Appl. Eng. Agric., 1, 96–99, https://doi.org/10.13031/2013.26773, 1985.
Hartmann, A. and Baker, A.: Modelling karst vadose zone hydrology and its
relevance for paleoclimate reconstruction, Earth-Sci. Rev., 172, 178–192,
https://doi.org/10.1016/j.earscirev.2017.08.001, 2017.
Hartmann, A., Lange, J., Vivó Aguado, À., Mizyed, N., Smiatek, G.,
and Kunstmann, H.: A multi-model approach for improved simulations of future
water availability at a large Eastern Mediterranean karst spring, J. Hydrol.,
468–469, 130–138, https://doi.org/10.1016/j.jhydrol.2012.08.024, 2012a.
Hartmann, A., Lange, J., Weiler, M., Arbel, Y., and Greenbaum, N.: A new
approach to model the spatial and temporal variability of recharge to karst
aquifers, Hydrol. Earth Syst. Sci., 16, 2219–2231,
https://doi.org/10.5194/hess-16-2219-2012, 2012b.
Hartmann, A., Barberá, J. A., Lange, J., Andreo, B., and Weiler, M.:
Progress in the hydrologic simulation of time variant recharge areas of karst
systems – Exemplified at a karst spring in Southern Spain, Adv. Water
Resour., 54, 149–160, https://doi.org/10.1016/j.advwatres.2013.01.010, 2013.
Hartmann, A., Goldscheider, N., Wagener, T., Lange, J., and Weiler, M.: Karst
water resources in a changing world: Review of hydrological modeling
approaches, Rev. Geophys., 52, 218–242, https://doi.org/10.1002/2013RG000443, 2014.
Hartmann, A., Gleeson, T., Rosolem, R., Pianosi, F., Wada, Y., and Wagener,
T.: A large-scale simulation model to assess karstic groundwater recharge
over Europe and the Mediterranean, Geosci. Model Dev., 8, 1729–1746,
https://doi.org/10.5194/gmd-8-1729-2015, 2015.
Hartmann, A., Gleeson, T., Wada, Y., and Wagener, T.: Enhanced groundwater
recharge rates and altered recharge sensitivity to climate variability
through subsurface heterogeneity, P. Natl. Acad. Sci. USA, 114, 2842–2847,
https://doi.org/10.1073/pnas.1614941114, 2017.
Haughton, N., Abramowitz, G., and Pitman, A. J.: On the predictability of
land surface fluxes from meteorological variables, Geosci. Model Dev., 11,
195–212, https://doi.org/10.5194/gmd-11-195-2018, 2018.
Hendrickx, J. M. H. and Flury, M.: Uniform and Preferential Flow Mechanisms
in the Vadose Zone, in: Conceptual Models of Flow and Transport in the
Fractured Vadose Zone, edited by: National Research Council, The National
Academies Press, Washington, DC, 149–188, 2001.
Hogue, T. S., Bastidas, L. A., Gupta, H. V., and Sorooshian, S.: Evaluating
model performance and parameter behavior for varying levels of land surface
model complexity, Water Resour. Res., 42, W08430, https://doi.org/10.1029/2005WR004440,
2006.
Holman, I. P., Brown, C., Janes, V., and Sandars, D.: Can we be certain about
future land use change in Europe? A multi-scenario, integrated-assessment
analysis, Agric. Syst., 151, 126–135, https://doi.org/10.1016/j.agsy.2016.12.001, 2017.
Hong, E.-M., Pachepsky, Y. A., Whelan, G., and Nicholson, T.: Simpler models
in environmental studies and predictions, Crit. Rev. Environ. Sci. Technol.,
47, 1669–1712, https://doi.org/10.1080/10643389.2017.1393264, 2017.
Hurtt, G. C., Chini, L. P., Frolking, S., Betts, R, A., Feddema, J., Fischer,
G., Fisk, J. P., Hibbard, K., Houghton, R. A., Janetos, A., Jones, C. D.,
Kindermann, G., Kinoshita, T., Klein Goldewijk, K., Riahi, K., Shevliakova,
E., Smith, S., Stehfest, E., Thomson, A., Thornton, P., van Vuuren, D. P.,
and Wang, Y. P.: Harmonization of land-use scenarios for the period
1500–2100: 600 years of global gridded annual land-use transitions, wood
harvest, and resulting secondary lands, Clim. Change, 109, 117–161,
https://doi.org/10.1007/s10584-011-0153-2, 2011.
IPCC: Climate Change 2013: The Physical Science Basis. Contribution of
Working Group I to the Fifth Assessment Report of the Intergovernmental Panel
on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K.,
Tignor, M. M. B., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V.,
Midgley, P. M., Cambridge University Press, 2013.
Ivanov, V. Y., Bras, R. L., and Curtis, D. C.: A weather generator for
hydrological, ecological, and agricultural applications, Water Resour. Res.,
43, W10406, https://doi.org/10.1029/2006WR005364, 2007.
Jarvis, P. G.: The Interpretation of the Variations in Leaf Water Potential
and Stomatal Conductance Found in Canopies in the Field, Phil. Trans. R. Soc.
Lond. B., 273, 593–610, https://doi.org/10.1098/rstb.1976.0035, 1976.
Jothityangkoon, C. and Sivapalan, M.: Framework for exploration of climatic
and landscape controls on catchment water balance, with emphasis on
inter-annual variability, J. Hydrol., 371, 154–168,
https://doi.org/10.1016/j.jhydrol.2009.03.030, 2009.
Kergoat, L.: A model for hydrological equilibrium of leaf area index on a
global scale, J. Hydrol., 212–213, 268–286,
https://doi.org/10.1016/S0022-1694(98)00211-X, 1998.
Kim, J. H. and Jackson, R. B.: A Global Analysis of Groundwater Recharge for
Vegetation, Climate, and Soils, Vadose Z. J., 11, https://doi.org/10.2136/vzj2011.0021RA,
2012.
Kirchner, J. W.: Getting the right answers for the right reasons: Linking
measurements, analyses, and models to advance the science of hydrology, Water
Resour. Res., 42, W03S04, https://doi.org/10.1029/2005WR004362, 2006.
Klimchouk, A. B. and Ford, D. C.: Types of karst and evolution of
hydrogeologic setting, in Speleogenesis, Evolution of Karst Aquifers, edited
by: Klimchouk, A. B., Ford, D. C., Palmer, A., and Dreybrodt, W., National
Speleological Society, Huntsville, Alabama, USA, 45–53, 2000.
Knohl, A., Schulze, E. D., Kolle, O., and Buchmann, N.: Large carbon uptake
by an unmanaged 250-year-old deciduous forest in Central Germany, Agric.
Forest Meteorol., 118, 151–167, https://doi.org/10.1016/S0168-1923(03)00115-1, 2003.
Kumar, R., Samaniego, L., and Attinger, S.: Implications of distributed
hydrologic model parameterization on water fluxes at multiple scales and
locations, Water Resour. Res., 49, 360–379, https://doi.org/10.1029/2012WR012195, 2013.
Laio, F., Porporato, A., Ridolfi, L., and Rodriguez-Iturbe, I.: On the
seasonal dynamics of mean soil moisture, J. Geophys. Res., 107, 4272,
https://doi.org/10.1029/2001JD001252, 2002.
Li, X. Y., Contreras, S., and Solé-Benet, A.: Spatial distribution of
rock fragments in dolines: A case study in a semiarid Mediterranean
mountain-range (Sierra de Gádor, SE Spain), Catena, 70, 366–374,
https://doi.org/10.1016/j.catena.2006.11.003, 2007.
Li, X. Y., Contreras, S., Solé-Benet, A., Cantón, Y., Domingo, F.,
Lázaro, R., Lin, H., Van Wesemael, B., and Puigdefábregas, J.:
Controls of infiltration-runoff processes in Mediterranean karst rangelands
in SE Spain, Catena, 86, 98–109, https://doi.org/10.1016/j.catena.2011.03.003, 2011.
Liang, X., Lettenmaier, D. P., Wood, E. F., and Burges, S. J.: A simple
hydrologically based model of land surface water and energy fluxes for
general circulation models, J. Geophys. Res., 99, 14415–14428,
https://doi.org/10.1029/94JD00483, 1994.
Loáiciga, H. A., Maidment, D. R., and Valdes, J. B.: Climate-change
impacts in a regional karst aquifer, Texas, USA, J. Hydrol., 227, 173–194,
https://doi.org/10.1016/S0022-1694(99)00179-1, 2000.
Lu, Y., Liu, S., Weng, L., Wang, L., Li, Z., and Xu, L.: Fractal analysis of
cracking in a clayey soil under freeze-thaw cycles, Eng. Geol., 208, 93–99,
https://doi.org/10.1016/j.enggeo.2016.04.023, 2016.
Martens, B., Miralles, D. G., Lievens, H., van der Schalie, R., de Jeu, R. A.
M., Fernández-Prieto, D., Beck, H. E., Dorigo, W. A., and Verhoest, N. E.
C.: GLEAM v3: satellite-based land evaporation and root-zone soil moisture,
Geosci. Model Dev., 10, 1903–1925, https://doi.org/10.5194/gmd-10-1903-2017,
2017.
Maxwell, R. M. and Condon, L. E.: Connections between groundwater flow and
transpiration partitioning, Science, 353, 377–380,
https://doi.org/10.1126/science.aaf7891, 2016.
McCabe, M. F., Ershadi, A., Jimenez, C., Miralles, D. G., Michel, D., and
Wood, E. F.: The GEWEX LandFlux project: evaluation of model evaporation
using tower-based and globally gridded forcing data, Geosci. Model Dev., 9,
283–305, https://doi.org/10.5194/gmd-9-283-2016, 2016.
Mendoza, P. A., Clark, M. P., Barlage, M., Rajagopalan, B., Samaniego, L.,
Abramowitz, G., and Gupta, H.: Are we unnecessarily constraining the agility
of complex process-based models?, Water Resour. Res., 51, 716–728,
https://doi.org/10.1002/2014WR015820, 2015.
Miralles, D. G., Gash, J. H., Holmes, T. R. H., De Jeu, R. A. M., and Dolman,
A. J.: Global canopy interception from satellite observations, J. Geophys.
Res., 115, D16122, https://doi.org/10.1029/2009JD013530, 2010.
Miralles, D. G., Holmes, T. R. H., De Jeu, R. A. M., Gash, J. H., Meesters,
A. G. C. A., and Dolman, A. J.: Global land-surface evaporation estimated
from satellite-based observations, Hydrol. Earth Syst. Sci., 15, 453–469,
https://doi.org/10.5194/hess-15-453-2011, 2011.
Monteith, J. L.: Evaporation and environment, Symp. Soc. Exp. Biol., 19,
205–234, 1965.
Morris, M. D.: Factorial sampling plans for preliminary computational
experiments, Technometrics, 33, 161–174, https://doi.org/10.2307/1269043, 1991.
Müller Schmied, H., Eisner, S., Franz, D., Wattenbach, M., Portmann, F.
T., Flörke, M., and Döll, P.: Sensitivity of simulated global-scale
freshwater fluxes and storages to input data, hydrological model structure,
human water use and calibration, Hydrol. Earth Syst. Sci., 18, 3511–3538,
https://doi.org/10.5194/hess-18-3511-2014, 2014.
Mund, M., Kutsch, W. L., Wirth, C., Kahl, T., Knohl, A., Skomarkova, M. V.,
and Schulze, E. D.: The influence of climate and fructification on the
inter-annual variability of stem growth and net primary productivity in an
old-growth, mixed beech forest, Tree Physiol., 30, 689–704,
https://doi.org/10.1093/treephys/tpq027, 2010.
Owor, M., Taylor, R. G., Tindimugaya, C., and Mwesigwa, D.: Rainfall
intensity and groundwater recharge: empirical evidence from the Upper Nile
Basin, Environ. Res. Lett., 4, 35009, https://doi.org/10.1088/1748-9326/4/3/035009, 2009.
Pechlivanidis, I. G., McIntyre, N., and Wheater, H. S.: The significance of
spatial variability of rainfall on simulated runoff: an evaluation based on
the Upper Lee catchment, UK, Hydrol. Res., 48, nh2016038,
https://doi.org/10.2166/nh.2016.038, 2016.
Penman, H. L.: The dependance of transpiration on weather and soil
conditions, J. Soil Sci., 1, 74–89, https://doi.org/10.1111/j.1365-2389.1950.tb00720.x,
1950.
Pereira, L. S., Allen, R. G., Smith, M., and Raes, D.: Crop
evapotranspiration estimation with FAO56: Past and future, Agric. Water
Manag., 147, 4–20, https://doi.org/10.1016/j.agwat.2014.07.031, 2015.
Pérez-Priego, O., Serrano-Ortiz, P., Sánchez-Cañete, E. P.,
Domingo, F., and Kowalski, A. S.: Isolating the effect of subterranean
ventilation on CO2 emissions from drylands to the atmosphere, Agric.
Forest Meteorol., 180, 194–202, https://doi.org/10.1016/j.agrformet.2013.06.014, 2013.
Pianosi, F., Sarrazin, F., and Wagener, T.: A Matlab toolbox for Global
Sensitivity Analysis, Environ. Model. Softw., 70, 80–85,
https://doi.org/10.1016/j.envsoft.2015.04.009, 2015.
Pinty, B., Jung, M., Kaminski, T., Lavergne, T., Mund, M., Plummer, S.,
Thomas, E., and Widlowski, J. L.: Evaluation of the JRC-TIP 0.01∘
products over a mid-latitude deciduous forest site, Remote Sens. Environ.,
115, 3567–3581, https://doi.org/10.1016/j.rse.2011.08.018, 2011.
Porporato, A., Daly, E., and Rodríguez-Iturbe, I.: Soil water balance
and ecosystem response to climate change, Am. Nat., 164, 625–632,
https://doi.org/10.1086/424970, 2004.
Priestley, C. H. B. and Taylor, R. J.: On the Assessment of Surface Heat Flux
and Evaporation Using Large-Scale Parameters, Mon. Weather Rev., 100, 81–92,
https://doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2, 1972.
Rahman, M. and Rosolem, R.: Towards a simple representation of chalk
hydrology in land surface modelling, Hydrol. Earth Syst. Sci., 21, 459–471,
https://doi.org/10.5194/hess-21-459-2017, 2017.
Rambal, S.: Quercus ilex facing water stress: a functional equilibrium
hypothesis, in Quercus ilex L. ecosystems: function, dynamics and management,
Advances in vegetation science, edited by: Romane, F. and Terradas, F.,
Springer, Dordrecht, the Netherlands, AIVS, 13, 147–153, 1992.
Rambal, S.: Le Paradoxe hydrologique des écosystèmes
méditerranéens sur des sols karstiques, in: Numéro spécial
des Annales de la Société d'Horticulture et d'Histoire Naturelle de
l'Hérault, 61–67, 2011.
Rambal, S., Ourcival, J. M., Joffre, R., Mouillot, F., Nouvellon, Y.,
Reichstein, M., and Rocheteau, A.: Drought controls over conductance and
assimilation of a Mediterranean evergreen ecosystem: Scaling from leaf to
canopy, Glob. Chang. Biol., 9, 1813–1824,
https://doi.org/10.1111/j.1365-2486.2003.00687.x, 2003.
Reichstein, M., Tenhunen, J. D., Roupsard, O., Ourcival, J. M., Rambal, S.,
Miglietta, F., Peressotti, A., Pecchiari, M., Tirone, G., and Valentini, R.:
Severe drought effects on ecosystem CO2 and H2O fluxes at three
Mediterranean evergreen sites: Revision of current hypotheses?, Glob. Change
Biol., 8, 999–1017, https://doi.org/10.1046/j.1365-2486.2002.00530.x, 2002.
Rimmer, A. and Hartmann, A.: Simplified conceptual structures and analytical
solutions for groundwater discharge using reservoir equations, in Water
resources management and modeling, edited by: Nayak, P., InTech, Kakinada,
217–238, 2012.
Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng,
C.-J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin, J.
K., Walker, J. P., Lohmann, D., and Toll, D.: The Global Land Data
Assimilation System, B. Am. Meteorol. Soc., 85, 381–394,
https://doi.org/10.1175/BAMS-85-3-381, 2004.
Rosero, E., Yang, Z. L., Wagener, T., Gulden, L. E., Yatheendradas, S., and
Niu, G.-Y.: Quantifying parameter sensitivity, interaction, and
transferability in hydrologically enhanced versions of the Noah land surface
model over transition zones during the warm season, J. Geophys. Res.-Atmos.,
115, D03106, https://doi.org/10.1029/2009JD012035, 2010.
Rosolem, R., Gupta, H. V., Shuttleworth, W. J., Gonçalves de
Gonçalves, L. G., and Zeng, X.: Towards a comprehensive approach to
parameter estimation in land surface parameterization schemes, Hydrol.
Process., 27, 2075–2097, https://doi.org/10.1002/hyp.9362, 2013.
Ross, J.: Radiative transfer in plant communities, in Vegetation and the
Atmosphere, volume I Principles, edited by: Monteith, J., Academic Press,
London, 13–55, 1975.
Ruiz, L., Varma, M. R. R., Kumar, M. M. S., Sekhar, M., Maréchal, J.-C.,
Descloitres, M., Riotte, J., Kumar, S., Kumar, C., and Braun, J.-J.: Water
balance modelling in a tropical watershed under deciduous forest (Mule Hole,
India): Regolith matric storage buffers the groundwater recharge process, J.
Hydrol., 380, 460–472, https://doi.org/10.1016/j.jhydrol.2009.11.020, 2010.
Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli,
D., Saisana, M., and Tarantola, S. (Eds.): Global Sensitivity Analysis, The
Primer, John Wiley & Sons Ltd., Chichester, UK, 2008.
Samaniego, L., Kumar, R., and Attinger, S.: Multiscale parameter
regionalization of a grid-based hydrologic model at the mesoscale, Water
Resour. Res., 46, W05523, https://doi.org/10.1029/2008WR007327, 2010.
Samaniego, L., Brenner, J., Demirel, C. M., Jing, M., Kaluza, M., Kumar, R.,
Langenberg, B., Rakovec, O., Schäfer, D., Schrön, M., Schweppe, R.,
and Thober, S.: The mesoscale Hydrologic Model mHM, Documentation for version
5.9, Helmoltz Centre for Environmental Research (UFZ), Leipzig, Germany,
2018.
Samuels, R., Rimmer, A., Hartmann, A., Krichak, S., and Alpert, P.: Climate
Change Impacts on Jordan River Flow: Downscaling Application from a Regional
Climate Model, J. Hydrometeorol., 11, 860–879, https://doi.org/10.1175/2010JHM1177.1,
2010.
Sarrazin, F., Pianosi, F., and Wagener, T.: Global Sensitivity Analysis of
environmental models: Convergence and validation, Environ. Model. Softw., 79,
135–152, https://doi.org/10.1016/j.envsoft.2016.02.005, 2016.
Sarrazin, F., Hartmann, A., Pianosi, P., Rosolem, R., and Wagener, T.:
V2Karst version v1.1, https://doi.org/10.5281/zenodo.1484282, 2018.
Sauter, M.: Quantification and Forecasting of Regional Groundwater Flow and
Transport in a Karst Aquifer (Gallusquelle, Malm, SW. Germany), PhD thesis,
Tübinger Universität, Tübinger, Germany, 1992.
Savenije, H. H. G.: Determination of evaporation from a catchment water
balance at a monthly time scale, Hydrol. Earth Syst. Sci., 1, 93–100,
https://doi.org/10.5194/hess-1-93-1997, 1997.
Savenije, H. H. G.: The importance of interception and why we should delete
the term evapotranspiration from our vocabulary, Hydrol. Process., 18,
1507–1511, https://doi.org/10.1002/hyp.5563, 2004.
Scanlon, B. R., Keese, K. E., Flint, A. L., Flint, L. E., Gaye, C. B.,
Edmunds, W. M., and Simmers, I.: Global synthesis of groundwater recharge in
semiarid and arid regions, Hydrol. Process., 20, 3335–3370,
https://doi.org/10.1002/hyp.6335, 2006.
Schwinning, S.: The ecohydrology of roots in rocks, Ecohydrology Bearings –
Invited Commentary, Ecohydrology, 3, 238–245, https://doi.org/10.1002/eco.134, 2010.
Seidl, R., Schelhaas, M.-J., Rammer, W., and Verkerk, P. J.: Increasing
forest disturbances in Europe and their impact on carbon storage, Nat. Clim.
Change, 4, 806–810, https://doi.org/10.1038/nclimate2393, 2014.
Serrano-Ortiz, P., Kowalski, A. S., Domingo, F., Rey, A., Pegoraro, E.,
Villagarcía, L., and Alados-Arboledas, L.: Variations in daytime net
carbon and water exchange in a montane shrubland ecosystem in southeast
Spain, Photosynthetica, 45, 30–35, https://doi.org/10.1007/s11099-007-0005-5, 2007.
Shuttleworth, W. J.: Evapotranspiration, in: Handbook of Hydrology, edited
by: Maidment, D. R., McGraw-Hill Inc., New York, 4.1–4.53, 1993.
Shuttleworth, W. J. (Eds.): Terrestrial Hydrometeorology, John Wiley &
Sons Ltd., Chichester, UK, 2012.
Shuttleworth, W. J. and Wallace, J. S.: Evaporation From Spare Crops – An
Energy Combination Theory, Q. J. R. Meteorol. Soc., 111, 839–855,
https://doi.org/10.1002/qj.49711146910, 1985.
Simioni, G., Durand-Gillmann, M., and Huc, R.: Asymmetric competition
increases leaf inclination effect on light absorption in mixed canopies, Ann.
Forest Sci., 70, 123–131, https://doi.org/10.1007/s13595-012-0246-8, 2013.
Šimůnek, J., Šejna, M., Saito, H., Sakai, M., and van Genuchten,
M. T.: The HYDRUS-1D software package for simulating the one-dimensional
movement of water, heat, and multiple solutes in variably-saturated media,
Version 4.08, University of California Riverside, Riverside, USA, 2009.
Sitch, S., Smith, B., Prentice, I. C., Arneth, a., Bondeau, a., Cramer, W.,
Kaplan, J. O., Levis, S., Lucht, W., Sykes, M. T., Thonicke, K., and
Venevsky, S.: Evaluation of ecosystem dynamics, plant geography and
terrestrial carbon cycling in the LPJ dynamic global vegetation model, Glob.
Change Biol., 9, 161–185, https://doi.org/10.1046/j.1365-2486.2003.00569.x, 2003.
Smith, K. A.: Investigating Uncertainty in Global Hydrology Modelling, PhD
thesis, University of Nottingham, Nottingham, UK, 2016.
Sperna Weiland, F. C., Vrugt, J. A., Van Beek, R. L. P. H., Weerts, A. H.,
and Bierkens, M. F. P.: Significant uncertainty in global scale hydrological
modeling from precipitation data errors, J. Hydrol., 529, 1095–1115,
https://doi.org/10.1016/j.jhydrol.2015.08.061, 2015.
Stewart, J. B.: Modelling surface conductance of pine forest, Agric. Forest
Meteorol., 43, 19–35, https://doi.org/10.1016/0168-1923(88)90003-2, 1988.
Sutanudjaja, E. H., van Beek, L. P. H., de Jong, S. M., van Geer, F. C., and
Bierkens, M. F. P.: Large-scale groundwater modeling using global datasets: a
test case for the Rhine-Meuse basin, Hydrol. Earth Syst. Sci., 15,
2913–2935, https://doi.org/10.5194/hess-15-2913-2011, 2011.
Taylor, R. G., Todd, M. C., Kongola, L., Maurice, L., Nahozya, E., Sanga, H.,
and MacDonald, A. M.: Evidence of the dependence of groundwater resources on
extreme rainfall in East Africa, Nat. Clime Chang., 3, 374–378,
https://doi.org/10.1038/nclimate1731, 2013.
Tesemma, Z. K., Wei, Y., Peel, M. C., and Western, A. W.: The effect of
year-to-year variability of leaf area index on Variable Infiltration Capacity
model performance and simulation of runoff, Adv. Water Resour., 83, 310–322,
https://doi.org/10.1016/j.advwatres.2015.07.002, 2015.
Thornthwaite, C. W.: An Approach toward a Rational Classification of Climate,
Geogr. Rev., 38, 55–94, https://doi.org/10.2307/210739, 1948.
Tritz, S., Guinot, V., and Jourde, H.: Modelling the behaviour of a karst
system catchment using non-linear hysteretic conceptual model, J. Hydrol.,
397, 250–262, https://doi.org/10.1016/j.jhydrol.2010.12.001, 2011.
Twine, T. E., Kustas, W. P., Norman, J. M., Cook, D. R., Houser, P. R.,
Meyers, T. P., Prueger, J. H., Starks, P. J., and Wesley, M. L.: Correcting
eddy covariance flux underestimates over grassland, Agric. Forest Meteorol.,
103, 279–300, https://doi.org/10.1016/S0168-1923(00)00123-4, 2000.
Uhlenbrook, S.: Catchment hydrology – a science in which all processes are
preferential, Hydrol. Process., 20, 3581–3585, https://doi.org/10.1002/hyp.6564, 2006.
Valente, F., David, J. S., and Gash, J. H. C.: Modelling interception loss
for two sparse eucalypt and pine forests in central Portugal using
reformulated Rutter and Gash analytical models, J. Hydrol., 190, 141–162,
https://doi.org/10.1016/S0022-1694(96)03066-1, 1997.
Van Beek, R.: Forcing PCR-GLOBWB with CRU data, Utrecht University, the
Netherlands, available at:
http://vanbeek.geo.uu.nl/suppinfo/vanbeek2008.pdf (last access: 30 November 2018), 2008.
Van Beek, L. P. H. and Bierkens, M. F. P.: The Global Hydrological Model
PCR-GLOBWB: Conceptualization, Parameterization and Verification, Report
Department of Physical Geography, Utrecht University, Netherlands, available
at:
http://vanbeek.geo.uu.nl/suppinfo/vanbeekbierkens2009.pdf (last access: 30 November 2018), 2008.
Van Dijk, A. I. J. M. and Bruijnzeel, L. A.: Modelling rainfall interception
by vegetation of variable density using an adapted analytical model – Part
1: Model description, J. Hydrol., 247, 230–238,
https://doi.org/10.1016/S0022-1694(01)00392-4, 2001.
Van Werkhoven, K., Wagener, T., Reed, P., and Tang, Y.: Rainfall
characteristics define the value of streamflow observations for distributed
watershed model identification, Geophys. Res. Lett., 35, L11403,
https://doi.org/10.1029/2008GL034162, 2008.
Vörösmarty, C. J.: Global change, the water cycle, and our search for
Mauna Loa, Hydrol. Process., 16, 135–139, https://doi.org/10.1002/hyp.527, 2002.
Vörösmarty, C. J., Moore, B., Grace, A. L., Gildea, M. P., Melillo,
J. M., Peterson, B. J., Rastetter, E. B., and Steudler, P. A.: Continental
scale models of water balance and fluvial transport: An application to South
America, Global Biogeochem. Cy., 3, 241–265, https://doi.org/10.1029/GB003i003p00241,
1989.
Vörösmarty, C. J., Federer, C. A., and Schloss, A. L.: Potential
evapotranspiration functions compared on US watersheds: implications for
global-scale water balance and terrestrial ecosystem modeling, J. Hydrol.,
207, 147–169, https://doi.org/10.1016/S0022-1694(98)00109-7, 1998.
Wada, Y., Van Beek, L. P. H., and Bierkens, M. F. P.: Nonsustainable
groundwater sustaining irrigation: A global assessment, Water Resour. Res.,
48, W00L06, https://doi.org/10.1029/2011WR010562, 2012.
Wang, K. and Dickinson, R. E.: A review of global terrestrial
evapotranspiration: observation, modelling, climatology, and climatic
variability, Rev. Geophys., 50, 1–54, https://doi.org/10.1029/2011RG000373, 2012.
Weiler, M. and McDonnell, J.: Virtual experiments: A new approach for
improving process conceptualization in hillslope hydrology, J. Hydrol., 285,
3–18, https://doi.org/10.1016/S0022-1694(03)00271-3, 2004.
Werth, S., Güntner, A., Petrovic, S., and Schmidt, R.: Integration of
GRACE mass variations into a global hydrological model, Earth Planet. Sci.
Lett., 277, 166–173, https://doi.org/10.1016/j.epsl.2008.10.021, 2009.
Williams, P. W.: The role of the subcutaneous zone in karst hydrology, J.
Hydrol., 61, 45–67, https://doi.org/10.1016/0022-1694(83)90234-2, 1983.
Williams, P. W. (Ed.): Environmental change and human impact on karst
terrains: an introduction, in: Karst Terrains – Environmental changes and
human impact, Catena Verlag, Cremlingen-Destedt, Germany, 1–19, 1993.
Williams, P. W.: The role of the epikarst in karst and cave hydrogeology?: a
review, Int. J. Speleol., 37, 1–10, https://doi.org/10.5038/1827-806X.37.1.1, 2008.
Yin, J., Porporato, A., and Albertson, J.: Interplay of climate seasonality
and soil moisture-rainfall feedback, Water Resour. Res., 50, 6053–6066,
https://doi.org/10.1002/2013WR014772, 2014.
Young, P., Parkinson, S., and Lees, M.: Simplicity out of complexity in
environmental modelling: Occam's razor revisited, J. Appl. Stat., 23,
165–210, https://doi.org/10.1080/02664769624206, 1996.
Zhang, Z., Chen, X., Ghadouani, A., and Shi, P.: Modelling hydrological
processes influenced by soil, rock and vegetation in a small karst basin of
southwest China, Hydrol. Process., 25, 2456–2470, https://doi.org/10.1002/hyp.8022,
2011.
Zhu, Z., Piao, S., Myneni, R. B., Huang, M., Zeng, Z., Canadell, J. G.,
Ciais, P., Sitch, S., Friedlingstein, P., Arneth, A., Cao, C., Cheng, L.,
Kato, E., Koven, C., Li, Y., Lian, X., Liu, Y., Liu, R., Mao, J., Pan, Y.,
Peng, S., Peñuelas, J., Poulter, B., Pugh, T. A. M., Stocker, B. D.,
Viovy, N., Wang, X., Wang, Y., Xiao, Z., Yang, H., Zaehle, S., and Zeng, N.:
Greening of the Earth and its drivers, Nat. Clim. ChangE, 6, 791–795,
https://doi.org/10.1038/nclimate3004, 2016.