Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.154 IF 5.154
  • IF 5-year value: 5.697 IF 5-year
    5.697
  • CiteScore value: 5.56 CiteScore
    5.56
  • SNIP value: 1.761 SNIP 1.761
  • IPP value: 5.30 IPP 5.30
  • SJR value: 3.164 SJR 3.164
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 59 Scimago H
    index 59
  • h5-index value: 49 h5-index 49
Volume 11, issue 2
Geosci. Model Dev., 11, 497–519, 2018
https://doi.org/10.5194/gmd-11-497-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Geosci. Model Dev., 11, 497–519, 2018
https://doi.org/10.5194/gmd-11-497-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Model description paper 05 Feb 2018

Model description paper | 05 Feb 2018

ORCHIDEE-PEAT (revision 4596), a model for northern peatland CO2, water, and energy fluxes on daily to annual scales

Chunjing Qiu et al.
Viewed  
Total article views: 2,264 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
1,417 796 51 2,264 188 58 77
  • HTML: 1,417
  • PDF: 796
  • XML: 51
  • Total: 2,264
  • Supplement: 188
  • BibTeX: 58
  • EndNote: 77
Views and downloads (calculated since 07 Sep 2017)
Cumulative views and downloads (calculated since 07 Sep 2017)
Viewed (geographical distribution)  
Total article views: 2,137 (including HTML, PDF, and XML) Thereof 2,121 with geography defined and 16 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited  
Saved (final revised paper)  
No saved metrics found.
Saved (discussion paper)  
No saved metrics found.
Discussed (final revised paper)  
Discussed (discussion paper)  
No discussed metrics found.
Latest update: 19 Aug 2019
Publications Copernicus
Download
Short summary
Northern peatlands store large amount of soil carbon and are vulnerable to climate change. We implemented peatland hydrological and carbon accumulation processes into the ORCHIDEE land surface model. The model was evaluated against EC measurements from 30 northern peatland sites. The model generally well reproduced the spatial gradient and temporal variations in GPP and NEE at these sites. Water table depth was not well predicted but had only small influence on simulated NEE.
Northern peatlands store large amount of soil carbon and are vulnerable to climate change. We...
Citation