Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.154 IF 5.154
  • IF 5-year value: 5.697 IF 5-year
    5.697
  • CiteScore value: 5.56 CiteScore
    5.56
  • SNIP value: 1.761 SNIP 1.761
  • IPP value: 5.30 IPP 5.30
  • SJR value: 3.164 SJR 3.164
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 59 Scimago H
    index 59
  • h5-index value: 49 h5-index 49
Volume 11, issue 2
Geosci. Model Dev., 11, 611–629, 2018
https://doi.org/10.5194/gmd-11-611-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: Air Quality Research at Street-Level (ACP/GMD inter-journal...

Geosci. Model Dev., 11, 611–629, 2018
https://doi.org/10.5194/gmd-11-611-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Model description paper 15 Feb 2018

Model description paper | 15 Feb 2018

Multi-scale modeling of urban air pollution: development and application of a Street-in-Grid model (v1.0) by coupling MUNICH (v1.0) and Polair3D (v1.8.1)

Youngseob Kim et al.

Related authors

Street-in-Grid modeling of gas-phase pollutants in Paris city
Lya Lugon, Karine Sartelet, Youngseob Kim, Jérémy Vigneron, and Olivier Chrétien
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-1087,https://doi.org/10.5194/acp-2019-1087, 2019
Revised manuscript accepted for ACP
Short summary
Precursors and formation of secondary organic aerosols from wildfires in the Euro-Mediterranean region
Marwa Majdi, Karine Sartelet, Grazia Maria Lanzafame, Florian Couvidat, Youngseob Kim, Mounir Chrit, and Solene Turquety
Atmos. Chem. Phys., 19, 5543–5569, https://doi.org/10.5194/acp-19-5543-2019,https://doi.org/10.5194/acp-19-5543-2019, 2019
Modeling the effect of non-ideality, dynamic mass transfer and viscosity on SOA formation in a 3-D air quality model
Youngseob Kim, Karine Sartelet, and Florian Couvidat
Atmos. Chem. Phys., 19, 1241–1261, https://doi.org/10.5194/acp-19-1241-2019,https://doi.org/10.5194/acp-19-1241-2019, 2019
Short summary
Impact of wildfires on particulate matter in the Euro-Mediterranean in 2007: sensitivity to some parameterizations of emissions in air quality models
Marwa Majdi, Solene Turquety, Karine Sartelet, Carole Legorgeu, Laurent Menut, and Youngseob Kim
Atmos. Chem. Phys., 19, 785–812, https://doi.org/10.5194/acp-19-785-2019,https://doi.org/10.5194/acp-19-785-2019, 2019
Development of a plume-in-grid model for industrial point and volume sources: application to power plant and refinery sources in the Paris region
Y. Kim, C. Seigneur, and O. Duclaux
Geosci. Model Dev., 7, 569–585, https://doi.org/10.5194/gmd-7-569-2014,https://doi.org/10.5194/gmd-7-569-2014, 2014

Related subject area

Atmospheric Sciences
An online emission module for atmospheric chemistry transport models: implementation in COSMO-GHG v5.6a and COSMO-ART v5.1-3.1
Michael Jähn, Gerrit Kuhlmann, Qing Mu, Jean-Matthieu Haussaire, David Ochsner, Katherine Osterried, Valentin Clément, and Dominik Brunner
Geosci. Model Dev., 13, 2379–2392, https://doi.org/10.5194/gmd-13-2379-2020,https://doi.org/10.5194/gmd-13-2379-2020, 2020
Short summary
Representing model uncertainty for global atmospheric CO2 flux inversions using ECMWF-IFS-46R1
Joe R. McNorton, Nicolas Bousserez, Anna Agustí-Panareda, Gianpaolo Balsamo, Margarita Choulga, Andrew Dawson, Richard Engelen, Zak Kipling, and Simon Lang
Geosci. Model Dev., 13, 2297–2313, https://doi.org/10.5194/gmd-13-2297-2020,https://doi.org/10.5194/gmd-13-2297-2020, 2020
Short summary
Coupled online learning as a way to tackle instabilities and biases in neural network parameterizations: general algorithms and Lorenz 96 case study (v1.0)
Stephan Rasp
Geosci. Model Dev., 13, 2185–2196, https://doi.org/10.5194/gmd-13-2185-2020,https://doi.org/10.5194/gmd-13-2185-2020, 2020
Short summary
Evaluating a fire smoke simulation algorithm in the National Air Quality Forecast Capability (NAQFC) by using multiple observation data sets during the Southeast Nexus (SENEX) field campaign
Li Pan, HyunCheol Kim, Pius Lee, Rick Saylor, YouHua Tang, Daniel Tong, Barry Baker, Shobha Kondragunta, Chuanyu Xu, Mark G. Ruminski, Weiwei Chen, Jeff Mcqueen, and Ivanka Stajner
Geosci. Model Dev., 13, 2169–2184, https://doi.org/10.5194/gmd-13-2169-2020,https://doi.org/10.5194/gmd-13-2169-2020, 2020
Short summary
WRF-Chem v3.9 simulations of the East Asian dust storm in May 2017: modeling sensitivities to dust emission and dry deposition schemes
Yi Zeng, Minghuai Wang, Chun Zhao, Siyu Chen, Zhoukun Liu, Xin Huang, and Yang Gao
Geosci. Model Dev., 13, 2125–2147, https://doi.org/10.5194/gmd-13-2125-2020,https://doi.org/10.5194/gmd-13-2125-2020, 2020
Short summary

Cited articles

AIRPARIF: Surveillance et information sur la qualité de l'air en Île-de-France en 2014, Tech. rep., AIRPARIF, 2015 (in French).
André, M., Carteret, M., Pasquier, A., and Liu, Y.: Methodology for characterizing vehicle fleet composition and its territorial variability, needed for assessing Low Emission Zones, Transp. Res. Proc., 25, 3286–3298, https://doi.org/10.1016/j.trpro.2017.05.174, 2017.
Berkowicz, R.: OSPM – a parameterised street pollution model, Environ. Monit. Assess., 65, 323–331, https://doi.org/10.1023/A:1006448321977, 2000.
Briant, R. and Seigneur, C.: Multi-scale modeling of roadway air quality impacts: Development and evaluation of a Plume-in-Grid model, Atmos. Environ., 68, 162–173, https://doi.org/10.1016/j.atmosenv.2012.11.058, 2013.
Cariolle, D., Caro, D., Paoli, R., Hauglustaine, D. A., Cuénot, B., Cozic, A., and Paugam, R.: Parameterization of plume chemistry into large-scale atmospheric models: Application to aircraft NOx emissions, J. Geophys. Res., 114, D19302, https://doi.org/10.1029/2009JD011873, 2009.
Publications Copernicus
Download
Short summary
A new multi-scale model of urban air pollution is presented. This model combines a regional chemical transport model (CTM) with spatial scales down to 1 km and a street-network model. The street-network model MUNICH is coupled to the Polair3D CTM to constitute the Street-in-Grid (SinG) model. SinG and MUNICH are used to simulate the concentrations of NOx and ozone in a Paris suburb. SinG shows better performance than MUNICH for NO2 measured at monitoring stations within a street canyon.
A new multi-scale model of urban air pollution is presented. This model combines a regional...
Citation