Supplement of

The dynamical core of the Aeolus 1.0 statistical–dynamical atmosphere model: validation and parameter optimization

Sonja Totz et al.

Correspondence to: Sonja Totz (sonja.totz@pik-potsdam.de)

The copyright of individual parts of the supplement might differ from the CC BY 3.0 License.
Supplementary Information

S1 Planetary Waves

S1.1 Calculation of planetary waves at tropospheric levels excluding EBL-level

At other tropospheric levels than the EBL, the components are calculated by

\[
\langle u^*(z) \rangle = -\frac{1}{f \rho_0} \nabla \phi \langle p^*_z \rangle \\
\langle v^*(z) \rangle = \frac{1}{f \rho_0} \nabla \lambda \langle p^*_z \rangle.
\] (S1)

The azonal component is computed assuming isothermal expansion of air parcels in planetary waves

\[
\langle p^*_z \rangle = \langle p^*_{EBL} \rangle \exp[(z - z_{EBL})/H_0] + \frac{p \cdot g}{\Gamma R} \exp[-z/H_0] \left\{ \ln \left[\frac{T(z)}{T(z_{EBL})} \right] - \ln \left[\frac{T(z_{EBL})}{T(z)} \right] \right\}.
\] (S3)

and

\[
\langle p^*_{EBL} \rangle = \rho \left(\langle u^*_{EBL} \rangle \right) \nabla \phi \langle \psi^*_{EBL} \rangle + 2 \left(\frac{\langle u^*_{EBL} \rangle}{a \cos(\phi)} + \Omega \right) \sin(\phi) \langle \psi^*_{EBL} \rangle.
\] (S4)

S1.2 Orographically induced stream function

For the waves excited by the orography, the stream function is calculated by

\[
\beta \nabla \lambda \langle \psi^*_{or,0,EBL} \rangle = -\frac{f}{H_0} \langle w_{or} \rangle + \frac{f^2}{g} \frac{\partial (u' \nu')^*}{\partial z}
\] (S5)

where \(f \) is the Coriolis parameter and \(\beta = \nabla \phi f \) and
\[w_{or} = (u) \nabla \phi h_{or} + (v) \nabla_A h_{or} + \alpha_{\text{std}} ((u)^2 + (v)^2 + (u')^2 + (v')^2)^{1/2} h_{std}. \] (S6)

1 The variable \(h_{or} \) describes the grid cell averaged orography height \(h_{std} \) the subgrid scale standard deviation of the height of mountains, and \(\alpha_{\text{std}} \) is an additional tuning parameter.

2 The azonal component describes quasi-stationary planetary waves and is subdivided into a geostrophic and ageostrophic term:

\[u^{*} = u_{geos}^{*} + u_{ageos}^{*} \]
\[v^{*} = v_{geos}^{*} + v_{ageos}^{*} \]

3 S1.3 Zeroth order solution of the thermally induced waves of the barotropic vorticity equation at the EBL

We start from the z-projection of the baroclinic vorticity equation, which can be derived from the simplified Navier-Stokes-equation :

\[\bar{\rho} \frac{\partial}{\partial x} \left(\frac{\partial^2 \langle \psi_{EBL}^{*} \rangle}{\partial x^2} + \frac{\partial^2 \langle \psi_{EBL}^{*} \rangle}{\partial y^2} \right) + \beta \frac{\partial \langle \psi^{*} \rangle}{\partial x} = - \frac{\rho}{T_0} \frac{\partial \langle T_{EBL}^{*} \rangle}{\partial x} \frac{1}{\partial y} \frac{1}{\bar{p}} \] (S7)

with \(\beta = \frac{2\Omega}{a} \cos \phi \), and \(\Omega \) is the earth’s rotation angular velocity, \(a \) is the earth’s radius and \(\phi \) the latitude.

4 In Eq. (S7) \(\langle \psi_{EBL}^{*} \rangle \) is the stream function of the azonal large-scale component at the equivalent barotropic level \(z_{EBL} \), \(x \) and \(y \) are the horizontal and vertical direction, \(T_0 \) is the constant reference temperature and \(\langle T_{EBL}^{*} \rangle \) is the large-scale long-term azonal temperature at the EBL. The variable \(\bar{u} \) is the zonal mean zonal wind velocity, \(\rho_0 \) stands for the density near surface and \(\bar{p} \) is the zonal mean pressure.

5 For the stream function of the azonal large-scale component of motion at the equivalent barotropic level \(z_{EBL} \) we use the ansatz

\[\langle \psi_{EBL}^{*} \rangle = \langle \psi_{0,EBL}^{*} \rangle + \epsilon \langle \psi_{1,EBL}^{*} \rangle + ... \]

6 For the zeroth order approximation, we can neglect higher order derivations of \(\Psi \):

\[\beta \frac{\partial \langle \psi_{0,EBL}^{*} \rangle}{\partial x} = - \frac{1}{\rho T_0} \frac{\partial \langle T_{EBL}^{*} \rangle}{\partial x} \frac{\partial}{\partial y} \int_0^{\infty} \rho \langle T(z) \rangle \frac{dz}{H_0} \] (S8)

7 In eq. (S8), we replaced \(\bar{p} = \int_0^{\infty} R \rho \langle T(z) \rangle \frac{dz}{H_0} \) and \(H_0 = RT_0 / g \) and \(\rho = \rho_0 \exp(-z/H_0) \), \(R \) is the gas constant, \(\rho \) is the air density, \(T \) is the temperature, \(H_0 \) is the atmospheric scale height, and \(g \) the gravity acceleration. Per definition, one can replace the term with
\[\int_0^{\infty} \frac{p}{H_0} \, dz = \frac{gR}{RT_0} 2 \int_0^{z_{EBL}} \rho([T(z)]) \, dz \]

Such that

\[\frac{\partial (\psi_{0,EBL}^*)}{\partial x} = - \frac{aqR}{2\Omega RT_0^2 \rho \cos \phi} \frac{\partial}{\partial y} \int_0^{z_{EBL}} \rho([T(z)]) \, dz \frac{\partial (T_{EBL}^*)}{\partial x} \]

With latter equation and \(\frac{1}{a} \nabla_{\phi} = \partial / \partial y \), we can then derive

\[\langle \psi_{0,EBL}^* \rangle = - \langle T_{EBL}^* \rangle \frac{g}{\Omega \rho_0 T_0^2 \cos \phi} \nabla_{\phi} \int_0^{z_{EBL}} \rho([T(z)]) \, dz \]

S2 Derivation of the zonal mean meridional wind velocity

The zonal mean meridional wind velocity \(\langle \nu(z, \phi) \rangle \) which also accounts for convective contribution is calculated by

\[
\langle \nu(z, \phi) \rangle = \frac{d_1 \cdot (2 \tan(\phi)(u^*v^*) + (u'v')) + d_2 \cdot (\frac{\partial}{\partial \phi}(u^*v^*) + (u'v')) + d_3 \cdot \left(-\frac{dK_x}{z} + \frac{K_x}{H_0} \frac{\partial \langle \bar{u} \rangle}{\partial z} a \right) + d_4 \cdot (A)}{n_1 \cdot (\tan(\phi)\langle \bar{u} \rangle) + n_2 \cdot \left(-\frac{\partial \langle \bar{u} \rangle}{\partial \phi} \right) + n_3 \cdot (2\Omega a \sin(\phi))}
\]

Whereby the parameters are given in Table 1. We roughly approximate \(\langle u_{sf} \rangle \) by constant profile for this experiment

\[
\langle u_{sf} \rangle = \begin{cases}
2, & |\phi| > 40 \\
-2 \cos \left(\frac{\phi}{40^\circ} \right), & \text{otherwise}
\end{cases}
\]
The additional calculation of \(\langle u_f \rangle \) instead of the calculated surface zonal velocity is done to avoid instabilities.

Instabilities can emerge due to the strong positive feedback between the meridional temperature and vertical wind velocity, which lead to high latent heat. In nature these would be damped out but due to fixed troposphere height, we parameterize it in the above described way.

For the derivation we start with the differential equation of the zonal wind component

\[
\frac{du}{dt} = \tan \phi \frac{\rho v}{a} + f v - \frac{1}{\rho} \Delta \rho + F_u
\]

(S11)

Whereby \(a \) is the Earth radius, \(f \) is the Coriolis factor and \(F_u \) is the frictional force in \(u \)-direction. Multiplying the equation with \(\rho \) and using that \(\rho \frac{du}{dt} = \frac{d(\rho u)}{dt} - u \frac{d\rho}{dt} \frac{d(\rho u)}{dt} = \frac{\partial (\rho u)}{\partial t} + \textbf{V} \cdot \nabla \) and \(\nabla \cdot \Delta (\rho u) = \Delta (\rho V) \) we get

\[
\frac{\partial (\rho u)}{\partial t} + \Delta (\rho V) - u \left(\frac{d\rho}{dt} + (\rho u) \Delta \cdot \textbf{V} \right) = \frac{\tan \phi}{a} \rho uv + f \rho v - \Delta \rho + \rho F_u
\]

(S12)

With the continuity equation and using spherical coordinates, the equation simplifies to

\[
\frac{\partial (\rho u)}{\partial t} + \frac{1}{a \cos \phi} \frac{\partial (\rho u^2)}{\partial \lambda} + \frac{1}{a \cos \phi} \frac{\partial (\rho \cos \phi u \nu)}{\partial \phi} + \frac{\partial (\rho v u)}{\partial z} = \frac{\tan \phi}{a} \rho uv + f \rho v - \frac{1}{a \cos \phi} \frac{\partial \rho}{\partial \lambda} + \rho F_u
\]

We calculate the zonal average (\(\overline{\ldots} \)), take into account that \(\frac{\partial x}{\partial \lambda} = 0 \) and assume a vertical dependence of the density \(\rho = \rho_0(z) \):

\[
\frac{\overline{\partial (\rho_0 u)}}{\partial t} + \frac{1}{a} \frac{\partial (\rho_0 u \nu)}{\partial \phi} + \frac{\overline{\partial (\rho_0 v u)}}{\partial z} = 2 \frac{\tan \phi}{a} \rho \overline{uv} + f \rho \overline{v} + \rho_0 F_u
\]

We split the wind variables into an synoptic scale waves, planetary waves and zonal mean wind \(u = \overline{u} + u^* + u' \).

Under the assumption that \(\overline{u} \) and \(v^* \) are independent, the result of the zonal mean over the azonal component is zero:

\[
\overline{uv} = \overline{u} \overline{v} + \overline{u} v^* + \overline{u} v' + u^* \overline{v} + u^* v' + u' \overline{v} + u' v^* + u' v'
\]

\[
= \overline{u} \overline{v} + \overline{u} v^* + u^* \overline{v} + u' \overline{v} + u' v^*
\]
We average eq. (S12) over time and phase speed \langle \ldots \rangle. Due to a “gap” in the three-dimensional (period-wavelength-phase velocity) spectrum of atmospheric processes (see, e.g., Fraedrich & Böttger 1978, Coumou et al. 2011), the synoptic-scale component in its interaction with the large-scale long-term component of the atmospheric fields on the time scales about 10-20 days and longer could be, to a first approximation, represented (described) in terms of its ensemble (statistical) characteristics (the second and higher-order moments), and not as the individual eddies (Saltzman, 1978). We can simplify the terms \langle \bar{u} v' \rangle = \langle u' \bar{v} \rangle = 0. In addition, it is \bar{u} \bar{v} = \bar{u} \bar{v} due to quasi stationarity of both terms. It is also \frac{\partial}{\partial t} = 0 and \langle \bar{u} \bar{v} \rangle = \langle \bar{u} \bar{v} \rangle since the oscillations of \bar{u} and \bar{v} are very small and independent of each other. By using the continuity equation\frac{\rho_0}{a} \frac{\partial \bar{v}}{\partial \varphi} - \frac{\tan \varphi}{a} \rho_0 \bar{v} + \frac{\partial (\rho_0 \bar{w})}{\partial z} = 0, we can simplify eq. (S12) to

\begin{equation}
\frac{1}{a} \rho_0 \bar{v} = \frac{\rho_0}{a} \frac{\partial \langle v' u' \rangle + \langle v' u' \rangle}{\partial \varphi} + \rho_0 \frac{\partial \bar{u}}{\partial z} + \frac{\partial (\rho_0 \bar{w} + \langle w' u' \rangle)}{\partial z}
\end{equation}

With the assumption that \rho_0 = e^{-z/H_0} and \rho_0 \bar{v} = \frac{\partial \bar{v}}{\partial z} = \frac{\partial}{\partial z} \left(\kappa \rho_0 \frac{\partial \bar{u}}{\partial z} \right) = \kappa \frac{\partial \rho_0}{\partial z} \frac{\partial \bar{u}}{\partial z} + \rho_0 \frac{\partial \kappa}{\partial z} \frac{\partial \bar{u}}{\partial z} + \rho_0 \kappa \frac{\partial^2 \bar{u}}{\partial z^2} = \frac{\rho_0}{H_0} \frac{\partial \bar{u}}{\partial z} + \rho_0 \frac{\partial \kappa}{\partial z} \frac{\partial \bar{u}}{\partial z}, we obtain

\begin{equation}
\rho_0 \left(\frac{1}{a} \frac{\partial \bar{v}}{\partial \varphi} - \frac{\partial \bar{v}}{\partial z} - \kappa \frac{\rho_0}{H_0} \frac{\partial \bar{u}}{\partial z} \right) = 2 \frac{\rho_0}{a} \frac{\partial \langle v' u' \rangle + \langle v' u' \rangle}{\partial \varphi} - \rho_0 \frac{\partial \langle w' u' \rangle}{\partial \varphi} - \rho_0 \frac{\partial \bar{w}}{\partial \varphi} \frac{\partial \bar{u}}{\partial \varphi}
\end{equation}

The contribution to the vertical exchange of the atmospheric momentum from stationary eddies described in our case by zonally averaged \langle \bar{w} \bar{u}' \bar{u}' \rangle is shown negligibly small (Hantel and Hacker, 1978). Also, the scale analysis attests that \langle \bar{w} \rangle \frac{\partial \langle \bar{u} \rangle}{\partial z} are small (Petoukhov et al., 2003):

\begin{equation}
-\rho_0 \frac{\partial \langle \bar{u} \rangle}{\partial z} - \frac{\partial \langle \rho_0 \bar{w} + \langle \bar{w} u' \rangle \rangle}{\partial z} - \kappa \frac{\rho_0}{H_0} \frac{\partial \bar{u}}{\partial z} + \rho_0 \frac{\partial \kappa}{\partial z} \frac{\partial \bar{u}}{\partial z} \approx - \frac{\partial \langle \rho_0 \bar{w} + \langle \bar{w} u' \rangle \rangle}{\partial z} - \kappa \frac{\rho_0}{H_0} \frac{\partial \bar{u}}{\partial z} + \rho_0 \frac{\partial \kappa}{\partial z} \frac{\partial \bar{u}}{\partial z}
\end{equation}

Hence the eq. (S14) can be rewritten into

\begin{equation}
\rho_0 \left(\frac{1}{a} \frac{\partial \bar{v}}{\partial \varphi} - \frac{\partial \bar{v}}{\partial z} - \kappa \frac{\rho_0}{H_0} \frac{\partial \bar{u}}{\partial z} \right) = 2 \frac{\rho_0}{a} \frac{\partial \langle v' u' \rangle + \langle v' u' \rangle}{\partial \varphi} - \rho_0 \frac{\partial \langle w' u' \rangle}{\partial \varphi} - \rho_0 \frac{\partial \bar{w}}{\partial \varphi} \frac{\partial \bar{u}}{\partial \varphi}
\end{equation}
With \(\langle uu' \rangle = -\kappa \frac{\partial(u)}{\partial z} \), whereby \(\kappa' \) is the coefficient of large-scale turbulent exchange for the momentum due to transient synoptic eddies (Williams and Davies, 1965), we get

\[
\rho_0 \left(\frac{1}{a} \frac{\partial (\bar{u})}{\partial \phi} - \frac{\tan \phi}{a} \langle \bar{u} \rangle - f \right)
\]

\[
= 2 \frac{\tan \phi}{a} \left(\langle v' u' \rangle + \langle v' u' \rangle \right) - \frac{\rho_0}{a} \frac{\partial \left(\langle v' u' \rangle + \langle v' u' \rangle \right)}{\partial \phi} - (\kappa + \kappa') \frac{\partial \langle \bar{u} \rangle}{\partial z} + \rho_0 \frac{\partial \langle \kappa + \kappa' \rangle}{\partial z} \frac{\partial \langle \bar{u} \rangle}{\partial z}
\]

With \(K_z = \kappa + \kappa' \) we can simplify the equation to

\[
\langle v(z, \phi) \rangle = \frac{-2 \tan(\phi) \left(\langle u^* v^* \rangle + \langle u^* v^* \rangle \right) + \frac{\partial}{\partial \phi} \left(\langle u^* v^* \rangle + \langle u^* v^* \rangle \right) + \left(-\frac{d K_z}{dz} + K_z \frac{\partial \langle \bar{u} \rangle}{\partial z} \right) a}{\tan(\phi) \langle \bar{u} \rangle - \frac{\partial \langle \bar{u} \rangle}{\partial \phi} + 2 \Omega a \sin(\phi)}
\]

(S16)

The derived equation for the meridional velocity does not account for latent heat release associated with convective precipitation. To capture this additional term we include convective precipitation and finally introduce tuning parameters, which have values close to 1.

S3 Schematic plot of the optimization process

References

