Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.154 IF 5.154
  • IF 5-year value: 5.697 IF 5-year
    5.697
  • CiteScore value: 5.56 CiteScore
    5.56
  • SNIP value: 1.761 SNIP 1.761
  • IPP value: 5.30 IPP 5.30
  • SJR value: 3.164 SJR 3.164
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 59 Scimago H
    index 59
  • h5-index value: 49 h5-index 49
GMD | Articles | Volume 11, issue 2
Geosci. Model Dev., 11, 753–769, 2018
https://doi.org/10.5194/gmd-11-753-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
Geosci. Model Dev., 11, 753–769, 2018
https://doi.org/10.5194/gmd-11-753-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.

Model description paper 01 Mar 2018

Model description paper | 01 Mar 2018

The Extrapolar SWIFT model (version 1.0): fast stratospheric ozone chemistry for global climate models

Daniel Kreyling et al.
Related authors  
A Lagrangian convective transport scheme including a simulation of the time air parcels spend in updrafts (LaConTra v1.0)
Ingo Wohltmann, Ralph Lehmann, Georg A. Gottwald, Karsten Peters, Alain Protat, Valentin Louf, Christopher Williams, Wuhu Feng, and Markus Rex
Geosci. Model Dev., 12, 4387–4407, https://doi.org/10.5194/gmd-12-4387-2019,https://doi.org/10.5194/gmd-12-4387-2019, 2019
Short summary
Stratospheric ozone loss in the Arctic winters between 2005 and 2013 derived with ACE-FTS measurements
Debora Griffin, Kaley A. Walker, Ingo Wohltmann, Sandip S. Dhomse, Markus Rex, Martyn P. Chipperfield, Wuhu Feng, Gloria L. Manney, Jane Liu, and David Tarasick
Atmos. Chem. Phys., 19, 577–601, https://doi.org/10.5194/acp-19-577-2019,https://doi.org/10.5194/acp-19-577-2019, 2019
Short summary
Balloon-borne measurements of temperature, water vapor, ozone and aerosol backscatter on the southern slopes of the Himalayas during StratoClim 2016–2017
Simone Brunamonti, Teresa Jorge, Peter Oelsner, Sreeharsha Hanumanthu, Bhupendra B. Singh, K. Ravi Kumar, Sunil Sonbawne, Susanne Meier, Deepak Singh, Frank G. Wienhold, Bei Ping Luo, Maxi Boettcher, Yann Poltera, Hannu Jauhiainen, Rijan Kayastha, Jagadishwor Karmacharya, Ruud Dirksen, Manish Naja, Markus Rex, Suvarna Fadnavis, and Thomas Peter
Atmos. Chem. Phys., 18, 15937–15957, https://doi.org/10.5194/acp-18-15937-2018,https://doi.org/10.5194/acp-18-15937-2018, 2018
Short summary
The maintenance of elevated active chlorine levels in the Antarctic lower stratosphere through HCl null cycles
Rolf Müller, Jens-Uwe Grooß, Abdul Mannan Zafar, Sabine Robrecht, and Ralph Lehmann
Atmos. Chem. Phys., 18, 2985–2997, https://doi.org/10.5194/acp-18-2985-2018,https://doi.org/10.5194/acp-18-2985-2018, 2018
Short summary
A quantitative analysis of the reactions involved in stratospheric ozone depletion in the polar vortex core
Ingo Wohltmann, Ralph Lehmann, and Markus Rex
Atmos. Chem. Phys., 17, 10535–10563, https://doi.org/10.5194/acp-17-10535-2017,https://doi.org/10.5194/acp-17-10535-2017, 2017
Short summary
Related subject area  
Atmospheric Sciences
Development of the Real-time On-road Emission (ROE v1.0) model for street-scale air quality modeling based on dynamic traffic big data
Luolin Wu, Ming Chang, Xuemei Wang, Jian Hang, Jinpu Zhang, Liqing Wu, and Min Shao
Geosci. Model Dev., 13, 23–40, https://doi.org/10.5194/gmd-13-23-2020,https://doi.org/10.5194/gmd-13-23-2020, 2020
Short summary
An effective parameter optimization with radiation balance constraint in CAM5 (version 5.3)
Li Wu, Tao Zhang, Yi Qin, and Wei Xue
Geosci. Model Dev., 13, 41–53, https://doi.org/10.5194/gmd-13-41-2020,https://doi.org/10.5194/gmd-13-41-2020, 2020
Short summary
Volcanic ash forecast using ensemble-based data assimilation: an ensemble transform Kalman filter coupled with the FALL3D-7.2 model (ETKF–FALL3D version 1.0)
Soledad Osores, Juan Ruiz, Arnau Folch, and Estela Collini
Geosci. Model Dev., 13, 1–22, https://doi.org/10.5194/gmd-13-1-2020,https://doi.org/10.5194/gmd-13-1-2020, 2020
Short summary
Algorithmic differentiation for cloud schemes (IFS Cy43r3) using CoDiPack (v1.8.1)
Manuel Baumgartner, Max Sagebaum, Nicolas R. Gauger, Peter Spichtinger, and André Brinkmann
Geosci. Model Dev., 12, 5197–5212, https://doi.org/10.5194/gmd-12-5197-2019,https://doi.org/10.5194/gmd-12-5197-2019, 2019
Short summary
Explicit aerosol–cloud interactions in the Dutch Atmospheric Large-Eddy Simulation model DALES4.1-M7
Marco de Bruine, Maarten Krol, Jordi Vilà-Guerau de Arellano, and Thomas Röckmann
Geosci. Model Dev., 12, 5177–5196, https://doi.org/10.5194/gmd-12-5177-2019,https://doi.org/10.5194/gmd-12-5177-2019, 2019
Short summary
Cited articles  
Baldwin, M. P., Dameris, M., and Shepherd, T. G.: How Will the Stratosphere Affect Climate Change?, Science, 316, 1576–1577, https://doi.org/10.1126/science.1144303, 2007. a
Calvo, N., Polvani, L., and Solomon, S.: On the surface impact of Arctic stratospheric ozone extremes, Environ. Res. Lett., 10, 094003, https://doi.org/10.1088/1748-9326/10/9/094003, 2015. a
Cariolle, D. and Teyssèdre, H.: A revised linear ozone photochemistry parameterization for use in transport and general circulation models: multi-annual simulations, Atmos. Chem. Phys., 7, 2183–2196, https://doi.org/10.5194/acp-7-2183-2007, 2007. a, b
Dee, D., Uppala, S., Simmons, A., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, 2011. a, b
Eyring, V., Shepherd, T. G., and Waugh, D. W.: SPARC CCMVal Report on the Evaluation of Chemistry-Climate Models, Tech. rep., SPARC Office, available at: http://www.sparc-climate.org/publications/sparc-reports/ (last access: 25 February 2018), 2010. a
Publications Copernicus
Download
Short summary
The Extrapolar SWIFT model is a fast yet accurate stratospheric ozone chemistry module for global climate models. The importance of feedbacks between the climate system and the ozone layer has been demonstrated in previous studies. Therefore it is desirable to include an interactive ozone layer in climate simulations. However, ensemble simulations in particular have strict computational constraints. The Extrapolar SWIFT model provides an interactive ozone layer with small computational costs.
The Extrapolar SWIFT model is a fast yet accurate stratospheric ozone chemistry module for...
Citation