Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.154 IF 5.154
  • IF 5-year value: 5.697 IF 5-year
    5.697
  • CiteScore value: 5.56 CiteScore
    5.56
  • SNIP value: 1.761 SNIP 1.761
  • IPP value: 5.30 IPP 5.30
  • SJR value: 3.164 SJR 3.164
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 59 Scimago H
    index 59
  • h5-index value: 49 h5-index 49
GMD | Articles | Volume 11, issue 3
Geosci. Model Dev., 11, 989-1008, 2018
https://doi.org/10.5194/gmd-11-989-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: The Modular Earth Submodel System (MESSy) (ACP/GMD inter-journal...

Geosci. Model Dev., 11, 989-1008, 2018
https://doi.org/10.5194/gmd-11-989-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Development and technical paper 16 Mar 2018

Development and technical paper | 16 Mar 2018

Revised mineral dust emissions in the atmospheric chemistry–climate model EMAC (MESSy 2.52 DU_Astitha1 KKDU2017 patch)

Klaus Klingmüller et al.
Related authors  
Direct radiative effect of dust–pollution interactions
Klaus Klingmüller, Jos Lelieveld, Vlassis A. Karydis, and Georgiy L. Stenchikov
Atmos. Chem. Phys., 19, 7397-7408, https://doi.org/10.5194/acp-19-7397-2019,https://doi.org/10.5194/acp-19-7397-2019, 2019
Short summary
Modelling the aerosol chemical composition of the tropopause over the Tibetan Plateau during the Asian summer monsoon
Jianzhong Ma, Christoph Brühl, Qianshan He, Benedikt Steil, Vlassis A. Karydis, Klaus Klingmüller, Holger Tost, Bin Chen, Yufang Jin, Ningwei Liu, Xiangde Xu, Peng Yan, Xiuji Zhou, Kamal Abdelrahman, Andrea Pozzer, and Jos Lelieveld
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-412,https://doi.org/10.5194/acp-2019-412, 2019
Manuscript under review for ACP
Short summary
Aerosol water parameterization: long-term evaluation and importance for climate studies
Swen Metzger, Mohamed Abdelkader, Benedikt Steil, and Klaus Klingmüller
Atmos. Chem. Phys., 18, 16747-16774, https://doi.org/10.5194/acp-18-16747-2018,https://doi.org/10.5194/acp-18-16747-2018, 2018
Short summary
Stratospheric aerosol radiative forcing simulated by the chemistry climate model EMAC using Aerosol CCI satellite data
Christoph Brühl, Jennifer Schallock, Klaus Klingmüller, Charles Robert, Christine Bingen, Lieven Clarisse, Andreas Heckel, Peter North, and Landon Rieger
Atmos. Chem. Phys., 18, 12845-12857, https://doi.org/10.5194/acp-18-12845-2018,https://doi.org/10.5194/acp-18-12845-2018, 2018
Short summary
Sensitivity of transatlantic dust transport to chemical aging and related atmospheric processes
Mohamed Abdelkader, Swen Metzger, Benedikt Steil, Klaus Klingmüller, Holger Tost, Andrea Pozzer, Georgiy Stenchikov, Leonard Barrie, and Jos Lelieveld
Atmos. Chem. Phys., 17, 3799-3821, https://doi.org/10.5194/acp-17-3799-2017,https://doi.org/10.5194/acp-17-3799-2017, 2017
Short summary
Related subject area  
Climate and Earth System Modeling
The UKC3 regional coupled environmental prediction system
Huw W. Lewis, Juan Manuel Castillo Sanchez, Alex Arnold, Joachim Fallmann, Andrew Saulter, Jennifer Graham, Mike Bush, John Siddorn, Tamzin Palmer, Adrian Lock, John Edwards, Lucy Bricheno, Alberto Martínez-de la Torre, and James Clark
Geosci. Model Dev., 12, 2357-2400, https://doi.org/10.5194/gmd-12-2357-2019,https://doi.org/10.5194/gmd-12-2357-2019, 2019
Short summary
The Monash Simple Climate Model experiments (MSCM-DB v1.0): an interactive database of mean climate, climate change, and scenario simulations
Dietmar Dommenget, Kerry Nice, Tobias Bayr, Dieter Kasang, Christian Stassen, and Michael Rezny
Geosci. Model Dev., 12, 2155-2179, https://doi.org/10.5194/gmd-12-2155-2019,https://doi.org/10.5194/gmd-12-2155-2019, 2019
Short summary
Evaluation of the WRF lake module (v1.0) and its improvements at a deep reservoir
Fushan Wang, Guangheng Ni, William J. Riley, Jinyun Tang, Dejun Zhu, and Ting Sun
Geosci. Model Dev., 12, 2119-2138, https://doi.org/10.5194/gmd-12-2119-2019,https://doi.org/10.5194/gmd-12-2119-2019, 2019
Short summary
Calculating the turbulent fluxes in the atmospheric surface layer with neural networks
Lukas Hubert Leufen and Gerd Schädler
Geosci. Model Dev., 12, 2033-2047, https://doi.org/10.5194/gmd-12-2033-2019,https://doi.org/10.5194/gmd-12-2033-2019, 2019
Short summary
BARRA v1.0: the Bureau of Meteorology Atmospheric high-resolution Regional Reanalysis for Australia
Chun-Hsu Su, Nathan Eizenberg, Peter Steinle, Dörte Jakob, Paul Fox-Hughes, Christopher J. White, Susan Rennie, Charmaine Franklin, Imtiaz Dharssi, and Hongyan Zhu
Geosci. Model Dev., 12, 2049-2068, https://doi.org/10.5194/gmd-12-2049-2019,https://doi.org/10.5194/gmd-12-2049-2019, 2019
Short summary
Cited articles  
Abdelkader, M., Metzger, S., Mamouri, R. E., Astitha, M., Barrie, L., Levin, Z., and Lelieveld, J.: Dust–air pollution dynamics over the eastern Mediterranean, Atmos. Chem. Phys., 15, 9173–9189, https://doi.org/10.5194/acp-15-9173-2015, 2015. a, b, c
Abdelkader, M., Metzger, S., Steil, B., Klingmüller, K., Tost, H., Pozzer, A., Stenchikov, G., Barrie, L., and Lelieveld, J.: Sensitivity of transatlantic dust transport to chemical aging and related atmospheric processes, Atmos. Chem. Phys., 17, 3799–3821, https://doi.org/10.5194/acp-17-3799-2017, 2017. a, b
AERONET: available at: http://aeronet.gsfc.nasa.gov, last access: 31 August 2016. a
Albani, S., Mahowald, N. M., Perry, A. T., Scanza, R. A., Zender, C. S., Heavens, N. G., Maggi, V., Kok, J. F., and Otto-Bliesner, B. L.: Improved dust representation in the Community Atmosphere Model, J. Adv. Model. Earth Sy., 6, 541–570, https://doi.org/10.1002/2013MS000279, 2014. a, b
Allen, C. J. T., Washington, R., and Engelstaedter, S.: Dust emission and transport mechanisms in the central Sahara: Fennec ground-based observations from Bordj Badji Mokhtar, June 2011, J. Geophys. Res.-Atmos., 118, 6212–6232, https://doi.org/10.1002/jgrd.50534, 2013. a
Publications Copernicus
Download
Short summary
More than 1 billion tons of mineral dust particles are raised into the atmosphere every year, which has a significant impact on climate, society and ecosystems. The location, time and amount of dust emissions depend on surface and wind conditions. In the atmospheric chemistry–climate model EMAC, we have updated the relevant surface data and equations. Our validation shows that the updates substantially improve the agreement of model results and observations.
More than 1 billion tons of mineral dust particles are raised into the atmosphere every year,...
Citation