Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year
    4.890
  • CiteScore value: 4.49 CiteScore
    4.49
  • SNIP value: 1.539 SNIP 1.539
  • SJR value: 2.404 SJR 2.404
  • IPP value: 4.28 IPP 4.28
  • h5-index value: 40 h5-index 40
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 51 Scimago H
    index 51
GMD | Articles | Volume 12, issue 3
Geosci. Model Dev., 12, 1029-1066, 2019
https://doi.org/10.5194/gmd-12-1029-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Geosci. Model Dev., 12, 1029-1066, 2019
https://doi.org/10.5194/gmd-12-1029-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Development and technical paper 22 Mar 2019

Development and technical paper | 22 Mar 2019

CORDEX-WRF v1.3: development of a module for the Weather Research and Forecasting (WRF) model to support the CORDEX community

Lluís Fita et al.
Related authors  
ORCHIDEE-ROUTING: revising the river routing scheme using a high-resolution hydrological database
Trung Nguyen-Quang, Jan Polcher, Agnès Ducharne, Thomas Arsouze, Xudong Zhou, Ana Schneider, and Lluís Fita
Geosci. Model Dev., 11, 4965-4985, https://doi.org/10.5194/gmd-11-4965-2018,https://doi.org/10.5194/gmd-11-4965-2018, 2018
Short summary
Related subject area  
Climate and Earth System Modeling
A stochastic rupture earthquake code based on the fiber bundle model (TREMOL v0.1): application to Mexican subduction earthquakes
Marisol Monterrubio-Velasco, Quetzalcóatl Rodríguez-Pérez, Ramón Zúñiga, Doreen Scholz, Armando Aguilar-Meléndez, and Josep de la Puente
Geosci. Model Dev., 12, 1809-1831, https://doi.org/10.5194/gmd-12-1809-2019,https://doi.org/10.5194/gmd-12-1809-2019, 2019
Short summary
Efficient surrogate modeling methods for large-scale Earth system models based on machine-learning techniques
Dan Lu and Daniel Ricciuto
Geosci. Model Dev., 12, 1791-1807, https://doi.org/10.5194/gmd-12-1791-2019,https://doi.org/10.5194/gmd-12-1791-2019, 2019
Short summary
Calibration and analysis of the uncertainty in downscaling global land use and land cover projections from GCAM using Demeter (v1.0.0)
Min Chen, Chris R. Vernon, Maoyi Huang, Katherine V. Calvin, and Ian P. Kraucunas
Geosci. Model Dev., 12, 1753-1764, https://doi.org/10.5194/gmd-12-1753-2019,https://doi.org/10.5194/gmd-12-1753-2019, 2019
Short summary
A statistical and process-oriented evaluation of cloud radiative effects in high-resolution global models
Manu Anna Thomas, Abhay Devasthale, Torben Koenigk, Klaus Wyser, Malcolm Roberts, Christopher Roberts, and Katja Lohmann
Geosci. Model Dev., 12, 1679-1702, https://doi.org/10.5194/gmd-12-1679-2019,https://doi.org/10.5194/gmd-12-1679-2019, 2019
Short summary
The Brazilian Earth System Model ocean–atmosphere (BESM-OA) version 2.5: evaluation of its CMIP5 historical simulation
Sandro F. Veiga, Paulo Nobre, Emanuel Giarolla, Vinicius Capistrano, Manoel Baptista Jr., André L. Marquez, Silvio Nilo Figueroa, José Paulo Bonatti, Paulo Kubota, and Carlos A. Nobre
Geosci. Model Dev., 12, 1613-1642, https://doi.org/10.5194/gmd-12-1613-2019,https://doi.org/10.5194/gmd-12-1613-2019, 2019
Short summary
Cited articles  
Barella-Ortiz, A., Polcher, J., Tuzet, A., and Laval, K.: Potential evaporation estimation through an unstressed surface-energy balance and its sensitivity to climate change, Hydrol. Earth Syst. Sci., 17, 4625–4639, https://doi.org/10.5194/hess-17-4625-2013, 2013. a
Benjamin, S. G. and Miller, P. A.: An Alternative Sea Level Pressure Reduction and a Statistical Comparison of Geostrophic Wind Estimates with Observed Surface Winds, Mon. Weather Rev., 118, 2099–2116, https://doi.org/10.1175/1520-0493(1990)118<2099:AASLPR>2.0.CO;2, 1990. a, b
Bergot, T., Terradellas, E., Cuxart, J., Mira, A., Liechti, O., Mueller, M., and Nielsen, N. W.: Intercomparison of Single-Column Numerical Models for the Prediction of Radiation Fog, J. Appl. Meteorol. Clim., 46, 504–521, https://doi.org/10.1175/JAM2475.1, 2007. a
Brasseur, O.: Development and Application of a Physical Approach to Estimating Wind Gusts, Mon. Weather Rev., 129, 5–25, https://doi.org/10.1175/1520-0493(2001)129<0005:DAAOAP>2.0.CO;2, 2001. a, b
Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F.: Flux-Profile Relationships in the Atmospheric Surface Layer, J. Atmos. Sci., 28, 181–189, https://doi.org/10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2, 1971. a
Publications Copernicus
Download
Short summary
Regional climate experiments coordinated throughout CORDEX aim to study and provide high-quality climate data over a given region. The data are used in climate change mitigation and adaptation policy studies and by stakeholders. CORDEX requires a list of variables, most of which are not provided by atmospheric models. Aiming to help the community and to maximize the use of CORDEX exercises, we create a new module for WRF models to directly produce them by adding generic and additional ones.
Regional climate experiments coordinated throughout CORDEX aim to study and provide high-quality...
Citation