```python
>>> from sympy import Eq, solve, init_printing, pprint
>>> init_printing(use_latex=True)
>>> from devito import Function, TimeFunction, Grid

>>> grid = Grid(shape=(5, 5))
>>> u = TimeFunction(name='u', grid=grid, space_order=2, time_order=2)
>>> m = Function(name='m',grid=grid)

>>> eqn = Eq(m * u.dt2 - u.laplace)
>>> stencil = solve(eqn, u.forward)[0]
>>> pprint(Eq(u.forward, stencil))

Produces output equivalent to:

\[
\begin{align*}
    u(t + s, x, y) &= 2u(t, x, y) - u(t - s, x, y) \\
    &\quad - \frac{2s^2 u(t, x, y)}{h_y^2 m(x, y)} + \frac{s^2 u(t, x, y - h_y)}{h_y^2 m(x, y)} + \frac{s^2 u(t, x, y + h_y)}{h_y^2 m(x, y)} \\
    &\quad - \frac{2s^2 u(t, x, y)}{h_x^2 m(x, y)} + \frac{s^2 u(t, x - h_x, y)}{h_x^2 m(x, y)} + \frac{s^2 u(t, x + h_x, y)}{h_x^2 m(x, y)} \\
    \end{align*}
\]

\[
\frac{\Delta t^2 \Delta u}{m(x, y)}
\]