Articles | Volume 12, issue 4
https://doi.org/10.5194/gmd-12-1267-2019
https://doi.org/10.5194/gmd-12-1267-2019
Model description paper
 | Highlight paper
 | 
03 Apr 2019
Model description paper | Highlight paper |  | 03 Apr 2019

Terrainbento 1.0: a Python package for multi-model analysis in long-term drainage basin evolution

Katherine R. Barnhart, Rachel C. Glade, Charles M. Shobe, and Gregory E. Tucker

Related authors

Steady-state forms of channel profiles shaped by debris flow and fluvial processes
Luke A. McGuire, Scott W. McCoy, Odin Marc, William Struble, and Katherine R. Barnhart
Earth Surf. Dynam., 11, 1117–1143, https://doi.org/10.5194/esurf-11-1117-2023,https://doi.org/10.5194/esurf-11-1117-2023, 2023
Short summary
Evaluating Post-Wildfire Debris Flow Rainfall Thresholds and Volume Models at the 2020 Grizzly Creek Fire in Glenwood Canyon, Colorado, USA
Francis K. Rengers, Samuel Bower, Andrew Knapp, Jason W. Kean, Danielle W. vonLembke, Matthew A. Thomas, Jaime Kostelnik, Katherine R. Barnhart, Matthew Bethel, Joseph E. Gartner, Madeline Hille, Dennis M. Staley, Justin Anderson, Elizabeth K. Roberts, Stephen B. DeLong, Belize Lane, Paxton Ridgway, and Brendan P. Murphy
EGUsphere, https://doi.org/10.5194/egusphere-2023-2063,https://doi.org/10.5194/egusphere-2023-2063, 2023
Short summary
Evaluation of debris-flow building damage forecasts
Katherine R. Barnhart, Christopher R. Miller, Francis K. Rengers, and Jason W. Kean
EGUsphere, https://doi.org/10.5194/egusphere-2023-1892,https://doi.org/10.5194/egusphere-2023-1892, 2023
Short summary
Probabilistic assessment of postfire debris-flow inundation in response to forecast rainfall
Alexander B. Prescott, Luke A. McGuire, Kwang-Sung Jun, Katherine R. Barnhart, and Nina S. Oakley
EGUsphere, https://doi.org/10.5194/egusphere-2023-1931,https://doi.org/10.5194/egusphere-2023-1931, 2023
Short summary
The influence of large woody debris on post-wildfire debris flow sediment storage
Francis K. Rengers, Luke A. McGuire, Katherine R. Barnhart, Ann M. Youberg, Daniel Cadol, Alexander N. Gorr, Olivia J. Hoch, Rebecca Beers, and Jason W. Kean
Nat. Hazards Earth Syst. Sci., 23, 2075–2088, https://doi.org/10.5194/nhess-23-2075-2023,https://doi.org/10.5194/nhess-23-2075-2023, 2023
Short summary

Related subject area

Hydrology
Wflow_sbm v0.7.3, a spatially distributed hydrological model: from global data to local applications
Willem J. van Verseveld, Albrecht H. Weerts, Martijn Visser, Joost Buitink, Ruben O. Imhoff, Hélène Boisgontier, Laurène Bouaziz, Dirk Eilander, Mark Hegnauer, Corine ten Velden, and Bobby Russell
Geosci. Model Dev., 17, 3199–3234, https://doi.org/10.5194/gmd-17-3199-2024,https://doi.org/10.5194/gmd-17-3199-2024, 2024
Short summary
Reservoir Assessment Tool version 3.0: a scalable and user-friendly software platform to mobilize the global water management community
Sanchit Minocha, Faisal Hossain, Pritam Das, Sarath Suresh, Shahzaib Khan, George Darkwah, Hyongki Lee, Stefano Galelli, Konstantinos Andreadis, and Perry Oddo
Geosci. Model Dev., 17, 3137–3156, https://doi.org/10.5194/gmd-17-3137-2024,https://doi.org/10.5194/gmd-17-3137-2024, 2024
Short summary
HydroFATE (v1): a high-resolution contaminant fate model for the global river system
Heloisa Ehalt Macedo, Bernhard Lehner, Jim Nicell, and Günther Grill
Geosci. Model Dev., 17, 2877–2899, https://doi.org/10.5194/gmd-17-2877-2024,https://doi.org/10.5194/gmd-17-2877-2024, 2024
Short summary
Validation of a new global irrigation scheme in the land surface model ORCHIDEE v2.2
Pedro Felipe Arboleda-Obando, Agnès Ducharne, Zun Yin, and Philippe Ciais
Geosci. Model Dev., 17, 2141–2164, https://doi.org/10.5194/gmd-17-2141-2024,https://doi.org/10.5194/gmd-17-2141-2024, 2024
Short summary
GPEP v1.0: the Geospatial Probabilistic Estimation Package to support Earth science applications
Guoqiang Tang, Andrew W. Wood, Andrew J. Newman, Martyn P. Clark, and Simon Michael Papalexiou
Geosci. Model Dev., 17, 1153–1173, https://doi.org/10.5194/gmd-17-1153-2024,https://doi.org/10.5194/gmd-17-1153-2024, 2024
Short summary

Cited articles

Ahnert, F.: Brief description of a comprehensive three-dimensional process-response model of landform development, Z. Geomorfol., Supplementband, 25, 29–49, 1976.
Andrews, D. J. and Bucknam, R. C.: Fitting degradation of shoreline scarps by a nonlinear diffusion model, J. Geophys. Res., 92, 12857–12867, https://doi.org/10.1029/JB092iB12p12857, 1987.
Andrews, D. J. and Hanks, T. C.: Scarp degraded by linear diffusion: Inverse solution for age, J. Geophys. Res., 90, 10193–10208, https://doi.org/10.1029/JB090iB12p10193, 1985.
Attal, M., Tucker, G. E., Whittaker, A. C., Cowie, P. A., and Roberts, G. P.: Modeling fluvial incision and transient landscape evolution: Influence of dynamic channel adjustment, J. Geophys. Res., 113, F03013, https://doi.org/10.1029/2007JF000893, 2008.
Attal, M., Cowie, P., Whittaker, A., Hobley, D., Tucker, G., and Roberts, G.: Testing fluvial erosion models using the transient response of bedrock rivers to tectonic forcing in the Apennines, Italy, J. Geophys. Res., 116, F02005, https://doi.org/10.1029/2010JF001875, 2011.
Download
Short summary
Terrainbento 1.0 is a Python package for modeling the evolution of the surface of the Earth over geologic time (e.g., thousands to millions of years). Despite many decades of effort by the geomorphology community, there is no one established governing equation for the evolution of topography. Terrainbento 1.0 thus provides 28 alternative models that support hypothesis testing and multi-model analysis in landscape evolution.