Articles | Volume 12, issue 4
https://doi.org/10.5194/gmd-12-1477-2019
https://doi.org/10.5194/gmd-12-1477-2019
Model description paper
 | 
12 Apr 2019
Model description paper |  | 12 Apr 2019

Fldgen v1.0: an emulator with internal variability and space–time correlation for Earth system models

Robert Link, Abigail Snyder, Cary Lynch, Corinne Hartin, Ben Kravitz, and Ben Bond-Lamberty

Related authors

Technical note: Deep learning for creating surrogate models of precipitation in Earth system models
Theodore Weber, Austin Corotan, Brian Hutchinson, Ben Kravitz, and Robert Link
Atmos. Chem. Phys., 20, 2303–2317, https://doi.org/10.5194/acp-20-2303-2020,https://doi.org/10.5194/acp-20-2303-2020, 2020
Short summary
GCAM v5.1: representing the linkages between energy, water, land, climate, and economic systems
Katherine Calvin, Pralit Patel, Leon Clarke, Ghassem Asrar, Ben Bond-Lamberty, Ryna Yiyun Cui, Alan Di Vittorio, Kalyn Dorheim, Jae Edmonds, Corinne Hartin, Mohamad Hejazi, Russell Horowitz, Gokul Iyer, Page Kyle, Sonny Kim, Robert Link, Haewon McJeon, Steven J. Smith, Abigail Snyder, Stephanie Waldhoff, and Marshall Wise
Geosci. Model Dev., 12, 677–698, https://doi.org/10.5194/gmd-12-677-2019,https://doi.org/10.5194/gmd-12-677-2019, 2019
Short summary
Evaluation of integrated assessment model hindcast experiments: a case study of the GCAM 3.0 land use module
Abigail C. Snyder, Robert P. Link, and Katherine V. Calvin
Geosci. Model Dev., 10, 4307–4319, https://doi.org/10.5194/gmd-10-4307-2017,https://doi.org/10.5194/gmd-10-4307-2017, 2017
Short summary
Downscaling land use and land cover from the Global Change Assessment Model for coupling with Earth system models
Yannick Le Page, Tris O. West, Robert Link, and Pralit Patel
Geosci. Model Dev., 9, 3055–3069, https://doi.org/10.5194/gmd-9-3055-2016,https://doi.org/10.5194/gmd-9-3055-2016, 2016
Short summary
A simple object-oriented and open-source model for scientific and policy analyses of the global climate system – Hector v1.0
C. A. Hartin, P. Patel, A. Schwarber, R. P. Link, and B. P. Bond-Lamberty
Geosci. Model Dev., 8, 939–955, https://doi.org/10.5194/gmd-8-939-2015,https://doi.org/10.5194/gmd-8-939-2015, 2015
Short summary

Related subject area

Climate and Earth system modeling
The 4DEnVar-based weakly coupled land data assimilation system for E3SM version 2
Pengfei Shi, L. Ruby Leung, Bin Wang, Kai Zhang, Samson M. Hagos, and Shixuan Zhang
Geosci. Model Dev., 17, 3025–3040, https://doi.org/10.5194/gmd-17-3025-2024,https://doi.org/10.5194/gmd-17-3025-2024, 2024
Short summary
Continental-scale bias-corrected climate and hydrological projections for Australia
Justin Peter, Elisabeth Vogel, Wendy Sharples, Ulrike Bende-Michl, Louise Wilson, Pandora Hope, Andrew Dowdy, Greg Kociuba, Sri Srikanthan, Vi Co Duong, Jake Roussis, Vjekoslav Matic, Zaved Khan, Alison Oke, Margot Turner, Stuart Baron-Hay, Fiona Johnson, Raj Mehrotra, Ashish Sharma, Marcus Thatcher, Ali Azarvinand, Steven Thomas, Ghyslaine Boschat, Chantal Donnelly, and Robert Argent
Geosci. Model Dev., 17, 2755–2781, https://doi.org/10.5194/gmd-17-2755-2024,https://doi.org/10.5194/gmd-17-2755-2024, 2024
Short summary
G6-1.5K-SAI: a new Geoengineering Model Intercomparison Project (GeoMIP) experiment integrating recent advances in solar radiation modification studies
Daniele Visioni, Alan Robock, Jim Haywood, Matthew Henry, Simone Tilmes, Douglas G. MacMartin, Ben Kravitz, Sarah J. Doherty, John Moore, Chris Lennard, Shingo Watanabe, Helene Muri, Ulrike Niemeier, Olivier Boucher, Abu Syed, Temitope S. Egbebiyi, Roland Séférian, and Ilaria Quaglia
Geosci. Model Dev., 17, 2583–2596, https://doi.org/10.5194/gmd-17-2583-2024,https://doi.org/10.5194/gmd-17-2583-2024, 2024
Short summary
Modeling the effects of tropospheric ozone on the growth and yield of global staple crops with DSSAT v4.8.0
Jose Rafael Guarin, Jonas Jägermeyr, Elizabeth A. Ainsworth, Fabio A. A. Oliveira, Senthold Asseng, Kenneth Boote, Joshua Elliott, Lisa Emberson, Ian Foster, Gerrit Hoogenboom, David Kelly, Alex C. Ruane, and Katrina Sharps
Geosci. Model Dev., 17, 2547–2567, https://doi.org/10.5194/gmd-17-2547-2024,https://doi.org/10.5194/gmd-17-2547-2024, 2024
Short summary
A one-dimensional urban flow model with an eddy-diffusivity mass-flux (EDMF) scheme and refined turbulent transport (MLUCM v3.0)
Jiachen Lu, Negin Nazarian, Melissa Anne Hart, E. Scott Krayenhoff, and Alberto Martilli
Geosci. Model Dev., 17, 2525–2545, https://doi.org/10.5194/gmd-17-2525-2024,https://doi.org/10.5194/gmd-17-2525-2024, 2024
Short summary

Cited articles

Akhtar, M. K., Wibe, J., Simonovic, S. P., and MacGee, J.: Integrated assessment model of society-biosphere-climate-economy-energy system, Environ. Modell. Softw., 49, 1 – 21, https://doi.org/10.1016/j.envsoft.2013.07.006, 2013. a
Alexeeff, S. E., Nychka, D., Sain, S. R., and Tebaldi, C.: Emulating mean patterns and variability of temperature across and within scenarios in anthropogenic climate change experiments, Climatic Change, 146, 319–333, https://doi.org/10.1007/s10584-016-1809-8, 2016. a
Bodman, R. W. and Jones, R. N.: Bayesian estimation of climate sensitivity using observationally constrained simple climate models, Wires. Clim. Change, 7, 461–473, https://doi.org/10.1002/wcc.397, 2016. a
Calvin, K. and Bond-Lamberty, B.: Integrated human-earth system modeling-state of the science and future directions, Environ. Res. Lett., 13, 063006, https://doi.org/10.1088/1748-9326/aac642, 2018. a
Castruccio, S. and Stein, M.: Global space-time models for climate ensembles, Ann. Appl. Stat., 7, 1593–1611, 2013. a
Download
Short summary
Earth system models (ESMs) produce the highest-quality future climate data available, but they are costly to run, so only a few runs from each model are publicly available. What is needed are emulators that tell us what would have happened, if we had been able to perform as many ESM runs as we might have liked. Much of the existing work on emulators has focused on deterministic projections of average values. Here we present a way to imbue emulators with the variability seen in ESM runs.