Avnery, S., Mauzerall, D. L., Liu, J., and Horowitz, L. W.: Global crop yield
reductions due to surface ozone exposure: 1. Year 2000 crop production losses
and economic damage, Atmos. Environ., 45, 2284–2296,
https://doi.org/10.1016/j.atmosenv.2010.11.045, 2011. a

Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A.
M., Li, Q., Liu, H. Y., Mickley, L. J., and Schultz, M. G. Global modeling of
tropospheric chemistry with assimilated meteorology: Model description and
evaluation, J. Geophys. Res., 106, 23073–23095, https://doi.org/10.1029/2001JD000807,
2001. a, b

Battaglino, C., Ballard, G., and Kolda, T. G.: A practical randomized CP
tensor decomposition, SIAM J. Matrix Anal. A., 39, 876–901, 2018. a

Benner, P., Gugercin, S., and Willcox, K.: A survey of projection-based model
reduction methods for parametric dynamical systems, SIAM Rev., 57, 483–531,
2015. a

Bian, H. and Prather, M. J.: Fast-J2: Accurate Simulation of Stratospheric
Photolysis in Global Chemical Models, J. Atmos. Chem., 41, 281–296,
https://doi.org/10.1023/A:1014980619462, 2002. a

Brasseur, G. P. and Jacob, D. J.: Modeling of Atmospheric Chemistry,
Cambridge University Press, Cambridge, UK, 2017. a

Cichocki, A. and Phan, A. H.: Fast Local Algorithms for Large Scale
Nonnegative Matrix and Tensor Factorizations, IEICE Transactions on
Fundamentals of Electronics, Communications and Computer Sciences, E92.A,
708–721, 2009. a, b

Cooper, M., Martin, R. V., Wespes, C., Coheur, P.-F., Clerbaux, C., and
Murray, L. T.: Tropospheric nitric acid columns from the IASI satellite
instrument interpreted with a chemical transport model: Implications for
parameterizations of nitric oxide production by lightning, J. Geophys.
Res.-Atmos., 119, 10068–10079, https://doi.org/10.1002/2014JD021907, 2014. a

Cunningham, J. P. and Ghahramani, Z.: Linear dimensionality reduction:
survey, insights, and generalizations, J. Mach. Learn. Res., 16, 2859–2900,
2015. a

Drineas, P. and Mahoney, M. W.: RandNLA: randomized numerical linear algebra,
Commun. ACM, 59, 80–90, 2016. a

Eastham, S. D., Weisenstein, D. K., and Barrett, S. R.: Development and
evaluation of the unified tropospheric–stratospheric chemistry extension
(UCX) for the global chemistry-transport model GEOS-Chem, Atmos. Environ.,
89, 52–63, https://doi.org/10.1016/j.atmosenv.2014.02.001, 2014. a

Eastham, S. D., Long, M. S., Keller, C. A., Lundgren, E., Yantosca, R. M.,
Zhuang, J., Li, C., Lee, C. J., Yannetti, M., Auer, B. M., Clune, T. L.,
Kouatchou, J., Putman, W. M., Thompson, M. A., Trayanov, A. L., Molod, A. M.,
Martin, R. V., and Jacob, D. J.: GEOS-Chem High Performance (GCHP v11-02c): a
next-generation implementation of the GEOS-Chem chemical transport model for
massively parallel applications, Geosci. Model Dev., 11, 2941–2953,
https://doi.org/10.5194/gmd-11-2941-2018, 2018. a

Eckart, C. and Young, G.: The approximation of one matrix by another of lower
rank, Psychometrika, 1, 211–218, 1936. a

Erichson, N. B., Voronin, S., Brunton, S. L., and Kutz, J. N.: Randomized
matrix decompositions using R, arXiv preprint, arXiv:1608.02148, 2016. a

Erichson, N. B., Brunton, S. L., and Kutz, J. N.: Compressed singular value
decomposition for image and video processing, in: 2017 IEEE International
Conference on Computer Vision Workshops (ICCVW), Venice, Italy, 22–29
October 2017, IEEE, 1880–1888, 2017a. a

Erichson, N. B., Manohar, K., Brunton, S. L., and Kutz, J. N.: Randomized CP
tensor decomposition, arXiv preprint, arXiv:1703.09074, 2017b. a

Erichson, N. B., Mendible, A., Wihlborn, S., and Kutz, J. N.: Randomized
Nonnegative Matrix Factorization, Pattern Recogn. Lett., 104, 1–7, 2018a. a

Erichson, N. B., Zeng, P., Manohar, K., Brunton, S. L., Kutz, J. N., and
Aravkin, A. Y.: Sparse Principal Component Analysis via Variable Projection,
arXiv preprint, arXiv:1804.00341, 2018b. a

Erichson, N. B.: Ristretto, available at:
https://github.com/erichson/ristretto, last access: 15 April 2019. a

Gillis, N.: Introduction to nonnegative matrix factorization, arXiv preprint
arXiv: 1703.00663, 2017. a

Gittens, A., Rothauge, K., Wang, S., Mahoney, M. W., Gerhardt, L., Kottalam,
J., Ringenburg, M., and Maschhoff, K.: Accelerating Large-Scale Data Analysis by Offloading to
High-Performance Computing Libraries using Alchemist, arXiv preprint,
arXiv:1805.11800, 2018. a

Halko, N., Martinsson, P.-G., and Tropp, J. A.: Finding structure with
randomness: Probabilistic algorithms for constructing approximate matrix
decompositions, SIAM Rev., 53, 217–288, 2011. a, b, c

Hu, L., Keller, C. A., Long, M. S., Sherwen, T., Auer, B., Da Silva, A.,
Nielsen, J. E., Pawson, S., Thompson, M. A., Trayanov, A. L., Travis, K. R.,
Grange, S. K., Evans, M. J., and Jacob, D. J.: Global simulation of
tropospheric chemistry at 12.5 km resolution: performance and evaluation of
the GEOS-Chem chemical module (v10-1) within the NASA GEOS Earth system model
(GEOS-5 ESM), Geosci. Model Dev., 11, 4603–4620,
https://doi.org/10.5194/gmd-11-4603-2018, 2018. a

Juntto, S. and Paatero, P.: Analysis of daily precipitation data by positive
matrix factorization, Environmetrics, 5, 127–144, 1994. a

Kutz, J. N.: Data-driven modeling & scientific computation: methods for
complex systems & big data, Oxford University Press, Oxford, UK, 2013. a, b, c

Kutz, J. N., Brunton, S. L., Brunton, B. W., and Proctor, J. L.: Dynamic Mode
Decomposition: Data-Driven Modeling of Complex Systems, SIAM-Society for
Industrial and Applied Mathematics, USA, 2016. a

Lee, D. D. and Seung, S. H.: Learning the parts of objects by non-negative
matrix factorization, Nature, 401, 788–791, 1999. a

Lee, E., Chan, C. K., and Paatero, P.: Application of positive matrix
factorization in source apportionment of particulate pollutants in Hong Kong,
Atmos. Environ., 33, 3201–3212, 1999. a

Long, M. S., Yantosca, R., Nielsen, J. E., Keller, C. A., da Silva, A.,
Sulprizio, M. P., Pawson, S., and Jacob, D. J.: Development of a
grid-independent GEOS-Chem chemical transport model (v9-02) as an atmospheric
chemistry module for Earth system models, Geosci. Model Dev., 8, 595–602,
https://doi.org/10.5194/gmd-8-595-2015, 2015. a

Mahoney, M. W.: Randomized
algorithms for matrices and data, Foundations and Trends in Machine Learning,
3, 123–224, 2011. a

Mao, J., Jacob, D. J., Evans, M. J., Olson, J. R., Ren, X., Brune, W. H.,
Clair, J. M. St., Crounse, J. D., Spencer, K. M., Beaver, M. R., Wennberg, P.
O., Cubison, M. J., Jimenez, J. L., Fried, A., Weibring, P., Walega, J. G.,
Hall, S. R., Weinheimer, A. J., Cohen, R. C., Chen, G., Crawford, J. H.,
McNaughton, C., Clarke, A. D., Jaeglé, L., Fisher, J. A., Yantosca, R.
M., Le Sager, P., and Carouge, C.: Chemistry of hydrogen oxide radicals (HOx)
in the Arctic troposphere in spring, Atmos. Chem. Phys., 10, 5823–5838,
https://doi.org/10.5194/acp-10-5823-2010, 2010. a

Mao, J., Paulot, F., Jacob, D. J., Cohen, R. C., Crounse, J. D., Wennberg,
P. O., Keller, C. A., Hudman, R. C., Barkley, M. P., and Horowitz, L. W.:
Ozone and organic nitrates over the eastern United States: Sensitivity to
isoprene chemistry, J. Geophys. Res.-Atmos., 118, 11256–11268,
https://doi.org/10.1002/jgrd.50817, 2013. a

Mao, J., Carlton, A., Cohen, R. C., Brune, W. H., Brown, S. S., Wolfe, G. M.,
Jimenez, J. L., Pye, H. O. T., Lee Ng, N., Xu, L., McNeill, V. F.,
Tsigaridis, K., McDonald, B. C., Warneke, C., Guenther, A., Alvarado, M. J.,
de Gouw, J., Mickley, L. J., Leibensperger, E. M., Mathur, R., Nolte, C. G.,
Portmann, R. W., Unger, N., Tosca, M., and Horowitz, L. W.: Southeast
Atmosphere Studies: learning from model-observation syntheses, Atmos. Chem.
Phys., 18, 2615–2651, https://doi.org/10.5194/acp-18-2615-2018, 2018. a

Martinsson, P.-G.: Randomized methods for matrix computations, arXiv
preprint, arXiv:1607.01649, 2016. a

Murray, L. T., Jacob, D. J., Logan, J. A., Hudman, R. C.,
and Koshak, W. J.: Optimized regional and interannual variability
of lightning in a global chemical transport model constrained by
LIS/OTD satellite data, J. Geophys. Res.-Atmos., 117, D20307,
https://doi.org/10.1029/2012JD017934, 2012. a

Paatero, P. and Tapper, U.: Positive matrix factorization: A non-negative
factor model with optimal utilization of error estimates of data values,
Environmetrics, 5, 111–126, 1994. a, b

Parrella, J. P., Jacob, D. J., Liang, Q., Zhang, Y., Mickley, L. J., Miller,
B., Evans, M. J., Yang, X., Pyle, J. A., Theys, N., and Van Roozendael, M.:
Tropospheric bromine chemistry: implications for present and pre-industrial
ozone and mercury, Atmos. Chem. Phys., 12, 6723–6740,
https://doi.org/10.5194/acp-12-6723-2012, 2012. a

Paterson, K. G., Sagady, J. L., Hooper, D. L., Bertman, S. B., Carroll,
M. A., and Shepson, P. B.: Analysis of air quality data using positive matrix
factorization, Environ. Sci. Technol., 33, 635–641, 1999. a

Roberts, G., Wooster, M. J., and Lagoudakis, E.: Annual and diurnal african
biomass burning temporal dynamics, Biogeosciences, 6, 849–866,
https://doi.org/10.5194/bg-6-849-2009, 2009. a

Rokhlin, V., Szlam, A., and Tygert, M.: A Randomized Algorithm for Principal
Component Analysis, SIAM J. Matrix Anal. A., 31, 1100–1124, 2010. a

Sherwen, T., Evans, M. J., Sommariva, R., Hollis, L. D. J., Ball, S. M.,
Monks, P. S., Reed, C., Carpenter, L. J., Lee, J. D., Forster, G., Bandy, B.,
Reeves, C. E., and Bloss, W. J.: Effects of halogens on European air-quality,
Faraday Discuss., 200, 75–100, https://doi.org/10.1039/C7FD00026J, 2017.
a

Silva, R. A., West, J. J., Zhang, Y., Anenberg, S. C., Lamarque, J.-F.,
Shindell, D. T., Collins, W. J., Dalsoren, S., Faluvegi, G., Folberth, G.,
Horowitz, L. W., Nagashima, T., Naik, V., Rumbold, S., Skeie, R., Sudo, K.,
Takemura, T., Bergmann, D., Cameron-Smith, P., Cionni, I., Doherty, R. M.,
Eyring, V., Josse, B., MacKenzie, I. A., Plummer, D., Righi, M., Stevenson,
D. S., Strode, S., Szopa, S., and Zeng, G.: Global premature mortality due to
anthropogenic outdoor air pollution and the contribution of past climate
change, Environ. Res. Lett., 8, 034005, https://doi.org/10.1088/1748-9326/8/3/034005,
2013. a

Stevenson, D. S., Dentener, F. J., Schultz, M. G., Ellingsen, K., van Noije,
T. P. C., Wild, O., Zeng, G., Amann, M., Atherton, C. S., Bell, N., Bergmann,
D. J., Bey, I., Butler, T., Cofala, J., Collins, W. J., Derwent, R. G.,
Doherty, R. M., Drevet, J., Eskes, H. J., Fiore, A. M., Gauss, M.,
Hauglustaine, D. A., Horowitz, L. W., Isaksen, I. S. A., Krol, M. C.,
Lamarque, J.-F., Lawrence, M. G., Montanaro, V., Müller, J.-F., Pitari,
G., Prather, M. J., Pyle, J. A., Rast, S., Rodriguez, J. M., Sanderson,
M. G., Savage, N. H., Shindell, D. T., Strahan, S. E., Sudo, K., and Szopa,
S.: Multimodel ensemble simulations of present-day and near-future
tropospheric ozone, J. Geophys. Res., 111, D08301,
https://doi.org/10.1029/2005JD006338, 2006. a

Trendafilov, N., Jolliffe, I. T., and Uddin, M.: A modified principal
component technique based on the LASSO, J. Comput. Graph. Stat., 12,
531–547, 2003. a

Velagar, M.: Scalable Diagnostics, available at:
https://github.com/ mvelegar/ScalableDiagnostics, last access: 15 April 2019. a

Voronin, S. and Martinsson, P.-G.: RSVDPACK: An implementation of randomized
algorithms for computing the singular value, interpolative, and CUR
decompositions of matrices on multi-core and GPU architectures, arXiv
preprint, arXiv:1502.05366, 2015. a

Xie, Y.-L., Hopke, P. K., Paatero, P., Barrie, L. A., and Li, S.-M.:
Identification of Source Nature and Seasonal Variations of Arctic Aerosol
bypositive matrix factorization, J. Atmos. Sci., 56, 249–260, 1999. a

Zou, H. and Hastie, T.: Regularization and Variable Selection via the Elastic
Net, J. R. Stat. Soc. B, 67, 301–320, 2003. a