Allwine, K. J., Shinn, J. H., Streit, G. E., Clawson, K. L., and Brown, M.:
Overview of URBAN 2000: A multiscale field study of dispersion through an urban environment,
B. Am. Meteorol. Soc., 83, 521–536, 2002. a

Angot, P., Bruneau, C. H., and Fabrie, P.:
A penalization method to take into account obstacles in incompressible viscous flows,
Numer. Math., 81, 497–520, 1999. a

Auguste, F.:
Instabilités de sillage et de trajectoire dans un fluide visqueux,
PhD thesis, University of Toulouse, Toulouse, France, 2010. a

Auguste, F.: MNH-IBM: Source code and input files, available at: https://cerfacs.fr/MNHIBM/Auguste-GMD-2019, last access: 13 May 2019. a

Aumond, P., Masson, V., Lac, C., Gauvreau, B., Dupont, S., and Berengier, M.:
Including the drag effects of canopies: real case large-eddy simulation studies,
Bound.-Lay. Meteorol., 146, 65–80, 2013. a, b

Batchelor, G. K.:
An introduction to fluid dynamics,
Cambridge university press, Cambridge, UK, 2000. a, b

Bernadet, P.:
The pressure term in the anelastic model: A symmetric elliptic solver for an Arakawa C grid in generalized coordinates,
Mon. Weather Rev., 123, 2474–2490, 1995. a

Biltoft, C. A.:
Customer report for mock urban setting test,
DPG Document Number 8-CO-160-000-052. Prepared for the Defence Threat Reduction Agency, Dugway, Utah, USA, 2001. a, b, c

Biltoft, C. A., Yee, E., and Jones, C. D.:
Overview of the Mock Urban Setting Test (MUST),
in: Proceedings of the Fourth Symposium on the Urban Environment, 19 May 2002, Norfolk, VA, USA, 20–24, 2002. a

Bouchon, F., Dubois, T., and James, N.:
A second-order cut-cell method for the numerical simulation of 2D flows past obstacles,
Comput. Fluids, 65, 80–91, 2012. a

Braza, M., Chassaing, P., and Minh, H. H.:
Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder,
J. Fluid Mech., 165, 79–130, 1986. a

Bredberg, J.:
On the wall boundary condition for turbulence models,
Chalmers University of Technology, Department of Thermo and Fluid Dynamics, Internal Report 00/4, Goteborg, Sweden, 2000. a, b

Brennen, C. E.:
A Review of Added Mass and Fluid Inertial Forces,
Naval Civil Engineering Laboratory, Port Hueneme, CA, USA, CR 82.010, 1982. a

Breuer, M., Lakehal, D., and Rodi, W.:
Flow around a surface mounted cubical obstacle: comparison of LES and RANS-results,
Computation of Three-Dimensional Complex Flows, Vieweg+ Teubner Verlag, 22–30, https://doi.org/10.1007/978-3-322-89838-8, 1996. a

Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E.:
Flux profile relationship in the atmospheric surface layer,
J. Atmos. Sci., 28, 181–189, 1971. a

Cai, S.-G., Ouahsine, A., Favier, J., and Hoarau, Y.:
Moving immersed boundary method,
Int. J. Numer. Meth. Fl., 85, 288–323, 2017. a, b

Camelli, F., Lohner, R., and Hanna, S.:
VLES study of MUST experiment,
43rd AIAA Aerospace Sciences Meeting and Exhibit, 10–13 January 2005, Reno, Nevada, USA, 2005. a

Capizzano, F.:
Turbulent wall model for immersed boundary methods,
AIAA J., 49, 2367–2381, 2011. a

Carpenter, K. M.:
Note on the paper “Radiation conditions for lateral boundaries of limited area numerical models”,
Q. J. Roy. Meteor. Soc., 110, 717–719M, 1982. a

Castro, I. P. and Robins, A. G.:
The flow around a surface-mounted cube in uniform and turbulent streams,
J. Fluid Mech., 79, 307–335, 1977. a

Clarke, D. K., Hassan, H. A., and Salas, M. D.:
Euler calculations for multielement airfoils using Cartesian grids,
AIAA J., 24, 353–358, 1986. a

Clawson, K. L., Carter, R. G., Lacroix, D. J., Biltoft, C. A., Hukari, N. F., Johnson, R. C., Rich, J. D., Beard, S. A., and Strong, T.:
Joint Urban 2003 (JU03) SF6 atmospheric tracer field tests,
US Department of Commerce, National Oceanic and Atmospheric Administration, Office of Oceanic and Atmospheric Research, Air Resources Laboratory, Idaho, USA, 2005. a

Colella, P. and Woodward, P. R.:
Application of the Piecewise Parabolic Method to meteorological modeling,
J. Comput. Phys., 54, 174–201, 1984. a

Coutanceau, M. and Bouard, R.:
Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation. Part I – Steady flow,
J. Fluid Mech., 79, 231–256, 1977. a

Craft, T., Gant, S., Gerasimov, A., Iacovides, H., and Launder, B.:
Wall Functions Strategies for Use in Turbulent Flow CFD,
Heat Transfer, 1, 3–14, 2002. a, b

Cuxart, J., Bougeault, P., and Redelsperger, J.-L.:
A turbulence scheme allowing for mesoscale and large-eddy simulations,
Q. J. Roy. Meteor. Soc., 126, 1–30, 2000. a

Dejoan, A., Santiago, J.-L., Martilli, A., Martin, F., and Pinelli, A.:
Comparison between large-eddy simulation and Reynolds-averaged Navier–Stokes computations for the MUST field experiment. Part II: effects of incident wind angle deviation on the mean flow and plume dispersion,
Bound.-Lay. Meteorol., 135, 133–150, 2010. a

Depardon, S., Lasserre, J. J., Brizzi, L. E., and Borée, J.:
Instantaneous skin-friction pattern analysis using automated critical point detection on near-wall PIV data,
Meas. Sci. Technol., 17, 1659–1669, 2006. a

Donnelly, R. P., Lyons, T. J., and Flassak, T.:
Evaluation of results of a numerical simulation of dispersion in an idealised urban area for emergency response modelling,
J. Atmos. Environ., 43, 4416–4423, 2009. a

Durran, D. R.:
Improving the anelastic approximation,
J. Atmos. Sci., 46, 1452–1461, 1989. a

Farhadi, M. and Rahnama, M.:
Large eddy simulation of separated flow over a wall-mounted cube,
Sci. Iran., 13, 124–133, 2006. a, b

Frank, W.:
Numerical Simulation And Verification Of The Flow Around A Surface Mounted Cubic Body Placed In A Fully Developed Turbulent Channel Flow,
WIT Trans. Model. Sim., 22, 213–222, 1999. a, b

Franke, R.:
Scattered data interpolation, tests of some methods,
Math. Comput., 38, 181–200, 1982. a, b

Gal-Chen, T. and Somerville, R. C.:
On the use of a coordinate transformation of the Navier-Stokes equations,
J. Comput. Phys., 17, 209–228, 1975. a, b

Gautier, R., Biau, D., and Lamballais, E.:
A reference solution of the flow over a circular cylinder at *Re*=40,
Comput. Fluids, 75, 103–111, 2013. a, b

Goldstein, D., Handler, R., and Sirovich, L.:
Modeling a no-slip flow boundary with an external force field,
J. Comput. Phys., 105, 354–366, 1993. a

Hanna, S. R., Hansen, O. R., and Dharmavaram, S.:
FLACS CFD air quality model performance evaluation with Kit Fox, MUST, Prairie Grass, and EMU observations,
J. Atmos. Env., 38, 4675–4687, 2004. a

Hidalgo, J., Pigeon, G., and Masson, V.:
Urban-breeze circulation during the CAPITOUL experiment: observational data analysis approach,
Meteorol. Atmos. Phys., 102, 223–241, 2008. a

Hunt, J. C., Wray, A. A., and Moin, P.:
Eddies, streams and convergence zones in turbulent flows, Proceedings of the 1988 Summer Program. NASA Centre for Turbulence Research, Stanford, USA, 193–208, 1988. a, b

Hussein, H. J. A. and Martinuzzi, R. J.:
Energy balance for turbulent flow around a surface mounted cube placed in a channel,
Phys. Fluids, 8, 764–780, 1996. a, b, c, d, e, f

Jiang, G.-S. and Shu, C.-W.:
Efficient Implementation of Weighted ENO Schemes,
J. Comput. Phys., 126, 202–228, 1996. a

Kalitzin, G., Medic, G., Iaccarino, G., and Durbin, P.:
Near-wall behavior of RANS turbulence models and implications for wall functions,
J. Comput. Phys., 204, 265–291, 2005. a

Kanda, M., Kanega, M., Kawai, T., Moriwaki, R., and Sugawara, H.:
Roughness lengths for momentum and heat derived from outdoor urban scale models,
J. Appl. Meteorol. Clim., 46, 1067–1079, 2007. a

Kempe, T. and Fröhlich, J.:
An improved immersed boundary method with direct forcing for the simulation of particle laden flows,
J. Comput. Phys., 231, 3663–3684, 2012. a

Kim, J., Kim, D., and Choi, H.:
An immersed-boundary finite-volume method for simulations of flow in complex geometries,
J. Comput. Phys., 171, 132–150, 2001. a

König, M.:
Large-eddy simulation modelling for urban Scale,
PhD thesis, University of Leipzig, Leipzig, Germany, 2014. a

Krajnovic, S. and Davidson, L.:
Development of large-eddy simulation for vehicle aerodynamics,
International Mechanical Engineering Congress and Exposition, Proceedings of IMECE2002, ASME, 17–22 November 2002, New Orleans, Louisiana, USA, 2002. a, b

Lac, C., Chaboureau, J.-P., Masson, V., Pinty, J.-P., Tulet, P., Escobar, J., Leriche, M., Barthe, C., Aouizerats, B., Augros, C., Aumond, P., Auguste, F., Bechtold, P., Berthet, S., Bielli, S., Bosseur, F., Caumont, O., Cohard, J.-M., Colin, J., Couvreux, F., Cuxart, J., Delautier, G., Dauhut, T., Ducrocq, V., Filippi, J.-B., Gazen, D., Geoffroy, O., Gheusi, F., Honnert, R., Lafore, J.-P., Lebeaupin Brossier, C., Libois, Q., Lunet, T., Mari, C., Maric, T., Mascart, P., Mogé, M., Molinié, G., Nuissier, O., Pantillon, F., Peyrillé, P., Pergaud, J., Perraud, E., Pianezze, J., Redelsperger, J.-L., Ricard, D., Richard, E., Riette, S., Rodier, Q., Schoetter, R., Seyfried, L., Stein, J., Suhre, K., Taufour, M., Thouron, O., Turner, S., Verrelle, A., Vié, B., Visentin, F., Vionnet, V., and Wautelet, P.: Overview of the Meso-NH model version 5.4 and its applications, Geosci. Model Dev., 11, 1929–1969, https://doi.org/10.5194/gmd-11-1929-2018, 2018. a

Lafore, J. P., Stein, J., Asencio, N., Bougeault, P., Ducrocq, V., Duron, J., Fischer, C., Héreil, P., Mascart, P., Masson, V., Pinty, J. P., Redelsperger, J. L., Richard, E., and Vilà-Guerau de Arellano, J.: The Meso-NH Atmospheric Simulation System. Part I: adiabatic formulation and control simulations, Ann. Geophys., 16, 90–109, https://doi.org/10.1007/s00585-997-0090-6, 1998. a

Lamb, H.: Hydrodynamics,
Cambridge university press, Cambridge, USA, 1932. a, b

Leveque, R. J. and Li, Z.:
The immersed interface method for elliptic equations with discontinuous coefficients and singular sources,
SIAM J. Numer. Anal., 31, 1019–1044, 1994. a

Lin, S. and Rood, R. B.:
Multidimensional Flux-Form Semi-Lagrangian Transport Schemes,
Mon. Weather Rev., 124, 2046–2070, 1996. a

Linnick, M. N. and Fasel, H. F.:
A high-order immersed interface method for simulating unsteady incompressible flows on irregular domains,
J. Comput. Phys., 204, 157–192, 2005. a

Lipps, F. and Hemler, R. S.:
A scale analysis of deep moist convection and some related numerical calculations,
J. Atmos. Sci., 39, 2192–2210, 1982. a

Liu, Y., Chen, F., Warner, T., and Basara, J.:
Verification of a mesoscale data-assimilation and forecasting system for the Oklahoma City area during the Joint Urban 2003 field project,
J. Appl. Meteorol. Clim., 45, 912–929, 2006. a

Lund, T. S.:
Generation of Turbulent Inflow Data for Spatially-Developing Boundary Layer Simulations,
J. Comput. Phys., 140, 233-–258, 1998. a

Lundquist, K. A., Chow, F. K., and Lundquist, J. K.:
An immersed boundary method for the Weather Research and Forecasting model,
Mon. Weather Rev., 138, 796–817, 2010. a, b

Lundquist, K. A., Chow, F. K., and Lundquist, J. K.:
An immersed boundary method enabling large-eddy simulations of flow over complex terrain in the WRF model,
Mon. Weather Rev., 140, 3936–3955, 2012. a, b

Lunet, T., Lac, C., Auguste, F., Visentin, F., Masson, V., and Escobar, J.:
Combination of WENO and explicit Runge-Kutta methods for wind transport in Meso-NH model,
Mon. Weather Rev., 145, 3817–3838, 2017. a

Martinuzzi, R. and Tropea, C.:
The flow around surface-mounted, prismatic obstacles placed in a fully developed channel flow,
J. Fluid. Eng.-T. ASME, 115, 85–85, 1993. a, b, c, d, e, f, g, h

Masson, V., Gomes, L., Pigeon, G., Liousse, C., Pont, V., Lagouarde, J.-P., Voogt, J., Salmond, J., Oke, T., Hidalgo, J., Legain, D., Garrouste, O., Lac, C., Connan, O., Briottet, X., Lachérade, S., and Tulet, P.:
The canopy and aerosol particles interactions in Toulouse urban layer (CAPITOUL) experiment,
Meteorol. Atmos. Phys., 102, 135–157, 2008. a

Masson, V., Le Moigne, P., Martin, E., Faroux, S., Alias, A., Alkama, R., Belamari, S., Barbu, A., Boone, A., Bouyssel, F., Brousseau, P., Brun, E., Calvet, J.-C., Carrer, D., Decharme, B., Delire, C., Donier, S., Essaouini, K., Gibelin, A.-L., Giordani, H., Habets, F., Jidane, M., Kerdraon, G., Kourzeneva, E., Lafaysse, M., Lafont, S., Lebeaupin Brossier, C., Lemonsu, A., Mahfouf, J.-F., Marguinaud, P., Mokhtari, M., Morin, S., Pigeon, G., Salgado, R., Seity, Y., Taillefer, F., Tanguy, G., Tulet, P., Vincendon, B., Vionnet, V., and Voldoire, A.: The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes, Geosci. Model Dev., 6, 929–960, https://doi.org/10.5194/gmd-6-929-2013, 2013. a, b

Mayor S., Spalart P., and Tripoli, G. J.:
Application of a Perturbation Recycling Method in the Large-Eddy Simulation of a Mesoscale Convective Internal Boundary Layer,
J. Atmos. Sci., 59, 2385–2395, 2002. a

Milliez, M. and Carissimo, B.:
Numerical simulations of pollutant dispersion in an idealized urban area, for different meteorological conditions,
Bound.-Lay. Meteorol., 122, 321–342, 2007. a, b

Milne-Thomson, L. M.:
Theoretical hydrodynamics,
Dover Books on Physics Series, Dover Publications, 1968. a

Mittal, R. and Iaccarino, G.:
Immersed Boundary Methods,
Annu. Rev. Fluid Mech., 37, 239–261, 2005. a, b

Mohd-Yusof, J.: Combined immersed-Boundary/B-Spline methods for simulations of flow in complex geometries, CTR Annual Research Briefs, NASA Research Center/Stanford University, Center for Turbulence Research, Stanford, CA, USA, 1997. a

Monin, A. S. and Obukhov, A. M. F.:
Basic laws of turbulent mixing in the surface layer of the atmosphere,
Contrib. Geophys. Inst. Acad. Sci. USSR, 151, 163–187, 1954. a

Moriwaki, R. and Kanda, M.:
Seasonal and diurnal fluxes of radiation, heat, water vapor, and carbon dioxide over a suburban area,
J. Appl. Meteorol., 43, 1700–1710, 2004. a

Park, J., Kwon, K., and Choi, H.:
Numerical solutions of flow past a circular cylinder at Reynolds numbers up to 160,
KSME Int. J., 12, 1200–1205, 1998. a

Peskin, C. S.:
Flow patterns around heart valves: a numerical method,
J. Comput. Phys., 10, 252–271, 1972. a

Pierson, J.-L.:
Traversée d'une interface entre deux fluides par une sphère,
PhD thesis, University of Toulouse, Toulouse, France, 2015. a

Piomelli, U. and Balaras, E.:
Wall-layer models for large-eddy simulations,
Annu. Rev. Fluid Mech., 34, 349–374, 2002. a

Prandtl, L.:
Bericht über Untersuchungen zur ausgebildeten Turbulenz,
Z. Angew. Math, Meth., 5, 136–139, 1925. a

Redelsperger, J.-L. and Sommeria, G.:
Methode de representation de la turbulence inferieure a la maille pour un modele tri-dimensionnel de convection nuageuse,
Bound.-Lay. Meteorol., 21, 509–530, 1981. a

Redelsperger, J.-L., Mahe, F., and Carlotti, P.:
A simple and general subgrid model suitable both surface layer and free-stream turbulence,
Bound.-Lay. Meteorol., 101, 375–408, 2001. a

Rodi, W., Ferziger, J. H., Breuer, M., and Pourquie, M.:
Status of large eddy simulation: results of a workshop,
J. Fluid. Eng.-T. ASME, 119, 248–262, 1997. a, b

Schumann, U. and Sweet, R.:
Fast Fourier Transforms for direct solution of Poisson's equations with staggered boundary conditions,
J. Comput. Phys., 75, 123–137, 1988. a, b

Shah, K. B. and Ferziger, J. H.:
A fluid mechanicians view of wind engineering: Large eddy simulation of flow past a cubic obstacle,
J. Wind Eng. Ind. Aerod., 67, 211–224, 1997. a, b, c

Shu, C.-W. and Osher, S.:
Efficient implementation of essentially non-oscillatory shock capturing schemes,
J. Comput. Phys., 83, 32–78, 1989. a

Skamarock, W. C., Smolarkiewicz, P. K., and Klemp, J. B.:
Preconditioned conjugate-residual solvers for Helmhotz equations in nonhydrostatic models,
Mon. Weather Rev., 125, 587–599, 1997. a

Stålberg, E., Brüger, A., Lötstedt, P., Johansson, A. V., and Henningson, D. S.:
High order accurate solution of flow past a circular cylinder,
J. Sci. Comput., 27, 431–441, 2006. a

Stein, J., Richard, E., Lafore, J.-P., Pinty, J.-P., Asencio, N., and Cosma, S.:
High-resolution non-hydrostatic simulations of flash-flood episodes with grid-nesting and ice-phase parametrization,
Meteorol. Atmos. Phys., 72, 101–110, 2000. a

Straka, J. M., Wilhelmson, R. B., Wicker, L. J., Anderson, J. R., and Droegemeier, K. K.:
Numerical solutions of a non-linear density current: A benchmark solution and comparisons,
Int. J. Numer. Meth. Fl., 17, 1–22, 1993. a

Sussman, M., Smereka, P., and Osher, S.:
A level set approach for computing solutions to incompressible two-phase flow,
J. Comput. Phys., 114, 146–159, 1994. a, b, c

Taira, K. and Colonius, T.:
The immersed boundary method: a projection approach,
J. Comput. Phys., 225, 2118–2137, 2007. a

Taneda, S.:
Experimental investigation of the wake behind a sphere at low Reynolds numbers,
J. Phys. Soc. Jpn., 11, 1104–1108, 1956. a, b, c

Tseng, Y. H. and Ferziger, J. H.:
A ghost-cell immersed boundary method for flow in complex geometry,
J. Comput. Phys., 192, 593–623, 2003. a, b, c

Udaykumar, H. S. and Shyy, W.:
A grid-supported marker particle scheme for interface tracking,
Numer. Heat Transfer, 27, 127–153, 1995. a

von Kármán, T.:
Mechanische Änlichkeit und Turbulenz, Proceedings of the Third International Congress of Applied Mechanics, 24–29 August 1930, Stockholm, Sweden, Part I, 1930. a, b

Wang, K., Li, Y., Li, Y., and Yuan, M.:
The stone forest as a small-scale field model for urban climate studies,
9th International Conference on Urban Climate (ICUC9), 20–24 July 2015, Toulouse, France, 2015. a

Williamson, C. H. K.:
Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low Reynolds numbers,
J. Fluid Mech., 206, 579–627, 1989. a, b

Yang, G., Causon, D. M., Ingram, D. M., Saunders, R., and Batten, P.:
A Cartesian cut cell method for compressible flows part A: Static body problems,
Aeronaut. J., 101, 47–56, 1997.
a

Yang, X. I. and Meneveau, C.:
Recycling inflow method for simulations of spatially evolving turbulent boundary layers over rough surfaces,
J. Turbul., 17, 75–93, 2016. a

Ye, T., Mittal, R., Udaykumar, H. S., and Shyy, W.:
An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries,
J. Comput. Phys., 156, 209–240, 1999. a

Yee, E. and Biltoft, C. A.:
Concentration fluctuation measurements in a plume dispersing through a regular array of obstacles,
Bound.-Lay. Meteorol., 111, 363–415, 2004. a, b, c, d, e, f, g, h

Young, D. M. and Jea, K. C.:
Generalized conjugate-gradient acceleration of nonsymmetrizable iterative methods,
Linear Algebra Appl., 34, 159–194, 1980. a