Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year
    4.890
  • CiteScore value: 4.49 CiteScore
    4.49
  • SNIP value: 1.539 SNIP 1.539
  • SJR value: 2.404 SJR 2.404
  • IPP value: 4.28 IPP 4.28
  • h5-index value: 40 h5-index 40
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 51 Scimago H
    index 51
GMD | Articles | Volume 12, issue 1
Geosci. Model Dev., 12, 261-273, 2019
https://doi.org/10.5194/gmd-12-261-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Geosci. Model Dev., 12, 261-273, 2019
https://doi.org/10.5194/gmd-12-261-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Development and technical paper 16 Jan 2019

Development and technical paper | 16 Jan 2019

Independent perturbations for physics parametrization tendencies in a convection-permitting ensemble (pSPPT)

Clemens Wastl et al.
Related authors  
Can positive matrix factorization help to understand patterns of organic trace gases at the continental Global Atmosphere Watch site Hohenpeissenberg?
M. Leuchner, S. Gubo, C. Schunk, C. Wastl, M. Kirchner, A. Menzel, and C. Plass-Dülmer
Atmos. Chem. Phys., 15, 1221-1236, https://doi.org/10.5194/acp-15-1221-2015,https://doi.org/10.5194/acp-15-1221-2015, 2015
Related subject area  
Climate and Earth System Modeling
Toward modular in situ visualization in Earth system models: the regional modeling system RegESM 1.1
Ufuk Utku Turuncoglu
Geosci. Model Dev., 12, 233-259, https://doi.org/10.5194/gmd-12-233-2019,https://doi.org/10.5194/gmd-12-233-2019, 2019
Short summary
RandomFront 2.3: a physical parameterisation of fire spotting for operational fire spread models – implementation in WRF-SFIRE and response analysis with LSFire+
Andrea Trucchia, Vera Egorova, Anton Butenko, Inderpreet Kaur, and Gianni Pagnini
Geosci. Model Dev., 12, 69-87, https://doi.org/10.5194/gmd-12-69-2019,https://doi.org/10.5194/gmd-12-69-2019, 2019
Short summary
Automatic tuning of the Community Atmospheric Model (CAM5) by using short-term hindcasts with an improved downhill simplex optimization method
Tao Zhang, Minghua Zhang, Wuyin Lin, Yanluan Lin, Wei Xue, Haiyang Yu, Juanxiong He, Xiaoge Xin, Hsi-Yen Ma, Shaocheng Xie, and Weimin Zheng
Geosci. Model Dev., 11, 5189-5201, https://doi.org/10.5194/gmd-11-5189-2018,https://doi.org/10.5194/gmd-11-5189-2018, 2018
Short summary
Evaluation of iterative Kalman smoother schemes for multi-decadal past climate analysis with comprehensive Earth system models
Javier García-Pintado and André Paul
Geosci. Model Dev., 11, 5051-5084, https://doi.org/10.5194/gmd-11-5051-2018,https://doi.org/10.5194/gmd-11-5051-2018, 2018
Short summary
ORCHIDEE-ROUTING: revising the river routing scheme using a high-resolution hydrological database
Trung Nguyen-Quang, Jan Polcher, Agnès Ducharne, Thomas Arsouze, Xudong Zhou, Ana Schneider, and Lluís Fita
Geosci. Model Dev., 11, 4965-4985, https://doi.org/10.5194/gmd-11-4965-2018,https://doi.org/10.5194/gmd-11-4965-2018, 2018
Short summary
Cited articles  
Bénard, P., Vivoda, J., Mašek, J., Smolıková, P., Yessad, K., Smith, C., Brožková, R., and Geleyn, J. F.: Dynamical kernel of the Aladin-NH spectral limited-area model: revised formulation and sensitivity experiments, Q. J. Roy. Meteor. Soc., 139, 155–169, https://doi.org/10.1002/qj.522, 2010. 
Bengtsson, L., Steinheimer, M., Bechtold, P., and Geleyn, J. F.: A stochastic parametrization for deep convection using cellular automata, Q. J. Roy. Meteor. Soc., 139, 1533–1543, https://doi.org/10.1002/qj.2108, 2013. 
Berner, J., Shutts, G. J., Leutbecher, M., and Palmer, T. N.: A spectral stochastic kinetic energy backscatter scheme and its impact on flow dependent predictability in the ECMWF ensemble prediction system, J. Atmos. Sci., 66, 603–626, https://doi.org/10.1175/2008JAS2677.1, 2009. 
Berner, J., Fossell, K. R., Ha, S. Y., Hacker, J. P., and Snyder, C.: Increasing the skill of probabilistic forecasts: Understanding performance improvements from model-error representations, Mon. Weather Rev., 143, 1295–1320, https://doi.org/10.1175/MWR-D-14-00091.1, 2015. 
Publications Copernicus
Download
Short summary
Ensemble forecasting at the convection-permitting scale (< 3 km) requires new methodologies in representing model uncertainties. In this paper a new stochastic scheme is proposed and tested in the complex terrain of the Alps. In this scheme the tendencies of the physical parametrizations are perturbed separately, which sustains a physically consistent relationship between the processes. This scheme increases the stability of the model and leads to improvements in the probabilistic performance.
Ensemble forecasting at the convection-permitting scale ( 3 km) requires new methodologies in...
Citation
Share