Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.154 IF 5.154
  • IF 5-year value: 5.697 IF 5-year
    5.697
  • CiteScore value: 5.56 CiteScore
    5.56
  • SNIP value: 1.761 SNIP 1.761
  • IPP value: 5.30 IPP 5.30
  • SJR value: 3.164 SJR 3.164
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 59 Scimago H
    index 59
  • h5-index value: 49 h5-index 49
GMD | Articles | Volume 12, issue 1
Geosci. Model Dev., 12, 261-273, 2019
https://doi.org/10.5194/gmd-12-261-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Geosci. Model Dev., 12, 261-273, 2019
https://doi.org/10.5194/gmd-12-261-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Development and technical paper 16 Jan 2019

Development and technical paper | 16 Jan 2019

Independent perturbations for physics parametrization tendencies in a convection-permitting ensemble (pSPPT)

Clemens Wastl et al.
Related authors  
Can positive matrix factorization help to understand patterns of organic trace gases at the continental Global Atmosphere Watch site Hohenpeissenberg?
M. Leuchner, S. Gubo, C. Schunk, C. Wastl, M. Kirchner, A. Menzel, and C. Plass-Dülmer
Atmos. Chem. Phys., 15, 1221-1236, https://doi.org/10.5194/acp-15-1221-2015,https://doi.org/10.5194/acp-15-1221-2015, 2015
Related subject area  
Climate and Earth System Modeling
Evaluation of the WRF lake module (v1.0) and its improvements at a deep reservoir
Fushan Wang, Guangheng Ni, William J. Riley, Jinyun Tang, Dejun Zhu, and Ting Sun
Geosci. Model Dev., 12, 2119-2138, https://doi.org/10.5194/gmd-12-2119-2019,https://doi.org/10.5194/gmd-12-2119-2019, 2019
Short summary
Calculating the turbulent fluxes in the atmospheric surface layer with neural networks
Lukas Hubert Leufen and Gerd Schädler
Geosci. Model Dev., 12, 2033-2047, https://doi.org/10.5194/gmd-12-2033-2019,https://doi.org/10.5194/gmd-12-2033-2019, 2019
Short summary
BARRA v1.0: the Bureau of Meteorology Atmospheric high-resolution Regional Reanalysis for Australia
Chun-Hsu Su, Nathan Eizenberg, Peter Steinle, Dörte Jakob, Paul Fox-Hughes, Christopher J. White, Susan Rennie, Charmaine Franklin, Imtiaz Dharssi, and Hongyan Zhu
Geosci. Model Dev., 12, 2049-2068, https://doi.org/10.5194/gmd-12-2049-2019,https://doi.org/10.5194/gmd-12-2049-2019, 2019
Short summary
ATTILA 4.0: Lagrangian advective and convective transport of passive tracers within the ECHAM5/MESSy (2.53.0) chemistry–climate model
Sabine Brinkop and Patrick Jöckel
Geosci. Model Dev., 12, 1991-2008, https://doi.org/10.5194/gmd-12-1991-2019,https://doi.org/10.5194/gmd-12-1991-2019, 2019
Short summary
The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations
David Walters, Anthony J. Baran, Ian Boutle, Malcolm Brooks, Paul Earnshaw, John Edwards, Kalli Furtado, Peter Hill, Adrian Lock, James Manners, Cyril Morcrette, Jane Mulcahy, Claudio Sanchez, Chris Smith, Rachel Stratton, Warren Tennant, Lorenzo Tomassini, Kwinten Van Weverberg, Simon Vosper, Martin Willett, Jo Browse, Andrew Bushell, Kenneth Carslaw, Mohit Dalvi, Richard Essery, Nicola Gedney, Steven Hardiman, Ben Johnson, Colin Johnson, Andy Jones, Colin Jones, Graham Mann, Sean Milton, Heather Rumbold, Alistair Sellar, Masashi Ujiie, Michael Whitall, Keith Williams, and Mohamed Zerroukat
Geosci. Model Dev., 12, 1909-1963, https://doi.org/10.5194/gmd-12-1909-2019,https://doi.org/10.5194/gmd-12-1909-2019, 2019
Short summary
Cited articles  
Bénard, P., Vivoda, J., Mašek, J., Smolıková, P., Yessad, K., Smith, C., Brožková, R., and Geleyn, J. F.: Dynamical kernel of the Aladin-NH spectral limited-area model: revised formulation and sensitivity experiments, Q. J. Roy. Meteor. Soc., 139, 155–169, https://doi.org/10.1002/qj.522, 2010. 
Bengtsson, L., Steinheimer, M., Bechtold, P., and Geleyn, J. F.: A stochastic parametrization for deep convection using cellular automata, Q. J. Roy. Meteor. Soc., 139, 1533–1543, https://doi.org/10.1002/qj.2108, 2013. 
Berner, J., Shutts, G. J., Leutbecher, M., and Palmer, T. N.: A spectral stochastic kinetic energy backscatter scheme and its impact on flow dependent predictability in the ECMWF ensemble prediction system, J. Atmos. Sci., 66, 603–626, https://doi.org/10.1175/2008JAS2677.1, 2009. 
Berner, J., Fossell, K. R., Ha, S. Y., Hacker, J. P., and Snyder, C.: Increasing the skill of probabilistic forecasts: Understanding performance improvements from model-error representations, Mon. Weather Rev., 143, 1295–1320, https://doi.org/10.1175/MWR-D-14-00091.1, 2015. 
Publications Copernicus
Download
Short summary
Ensemble forecasting at the convection-permitting scale (< 3 km) requires new methodologies in representing model uncertainties. In this paper a new stochastic scheme is proposed and tested in the complex terrain of the Alps. In this scheme the tendencies of the physical parametrizations are perturbed separately, which sustains a physically consistent relationship between the processes. This scheme increases the stability of the model and leads to improvements in the probabilistic performance.
Ensemble forecasting at the convection-permitting scale ( 3 km) requires new methodologies in...
Citation