Al-Hassan, Q.: On Powers of Tridiagonal Matrices with Nonnegative
Entries, J. Appl. Math. Sci., 6, 2357–2368, 2012. a, b
Al-Raei, A. M., Bosselmann, K., Böttcher, M. E., Hespenheide, B., and
Tauber, F.: Seasonal dynamics of microbial sulfate reduction in temperate
intertidal surface sediments: controls by temperature and organic matter,
Ocean Dynam., 59, 351–370, 2009. a
Andersson, A., Haecky, P., and Hagström, Å.: Effect of temperature
and
light on the growth of micro-nano-and pico-plankton: impact on algal
succession, Mar. Biol., 120, 511–520, 1994. a
Arndt, S., Jørgensen, B. B., LaRowe, D. E., Middelburg, J. J., Pancost,
R. D.,
and Regnier, P.: Quantifying the degradation of organic matter in marine
sediments: A review and synthesis, Earth-Sci. Rev., 123, 53–86,
https://doi.org/10.1016/j.earscirev.2013.02.008, 2013. a
Bale, A. J. and Morris, A. W.: Organic carbon in suspended particulate material
in the North Sea: Effect of mixing resuspended and background
particles, Cont. Shelf Res., 18, 1333–1345,
https://doi.org/10.1016/S0278-4343(98)00046-6, 1998. a, b
Belmans, F., van Grieken, R., and Brügmann, L.: Geochemical characterization
of recent sediments in the Baltic Sea by bulk and electron microprobe
analysis, Mar. Chem., 42, 223–236, 1993. a
Berner, R. A.: Early Diagenesis: A Theoretical Approach, Princeton
University Press, Princeton, NJ, USA, 1980. a
Boesen, C. and Postma, D.: Pyrite formation in anoxic environments of the
Baltic, Am. J. Sci., 288, 575–603, 1988. a
Böttcher, M. E.: Experimental dissolution of
CaCO3-MnCO3 solid solutions in
CO2-H2O solutions at 20 ∘C: I. Synthetic
low-temperature carbonates, Solid State Ionics, 101, 1263–1266, 1997. a
Böttcher, M. E. and Dietzel, M.: Metal-ion partitioning during
low-temperature precipitation and dissolution of anhydrous carbonates and
sulphates, no. 10 in EMU Notes in Mineralogy, 139–187, Mineralogical
Society, https://doi.org/10.1180/EMU-notes.10.4, 2010. a, b
Böttcher, M. E., Hespenheide, B., Llobet-Brossa, E., Beardsley, C.,
Larsen,
O., Schramm, A., Wieland, A., Böttcher, G., Berninger, U.-G., and Amann, R.:
The biogeochemistry, stable isotope geochemistry, and microbial community
structure of a temperate intertidal mudflat: an integrated study, Cont.
Shelf Res., 20, 1749–1769, 2000. a
Boudreau, B. P.: Diagenetic models and their implementation, vol. 505,
Springer, Berlin, Germany, 1997. a, b, c, d, e, f, g, h
Boudreau, B. P., Huettel, M., Forster, S., Jahnke, R. A., McLachlan, A.,
Middelburg, J. J., Nielsen, P., Sansone, F., Taghon, G., and Van Raaphorst,
W.: Permeable marine sediments: overturning an old paradigm, EOS,
Transactions American Geophysical Union, 82, 133–136, 2001. a, b
Brigolin, D., Lovato, T., Rubino, A., and Pastres, R.: Coupling
early-diagenesis and pelagic biogeochemical models for estimating the
seasonal variability of N and P fluxes at the sediment–water interface:
Application to the northwestern Adriatic coastal zone, J. Marine Syst.,
87, 239–255, https://doi.org/10.1016/j.jmarsys.2011.04.006, 2011. a
Bruckner, C. G., Mammitzsch, K., Jost, G., Wendt, J., Labrenz, M., and
Jürgens, K.: Chemolithoautotrophic denitrification of epsilonproteobacteria
in marine pelagic redox gradients, Environ. Microbiol., 15,
1505–1513, https://doi.org/10.1111/j.1462-2920.2012.02880.x, 2013. a
Bunke, D.: Sediment mixing processes and accumulation patterns in the
south-western Baltic Sea, PhD thesis, University of Greifswald (Germany),
Greifswald, available at:
https://nbn-resolving.org/urn:nbn:de:gbv:9-opus-20780 (last access:
10 January 2019), 2018. a, b
Butenschön, M., Zavatarelli, M., and Vichi, M.: Sensitivity of a marine
coupled physical biogeochemical model to time resolution, integration scheme
and time splitting method, Ocean Model., 52–53, 36–53,
https://doi.org/10.1016/j.ocemod.2012.04.008, 2012. a
Butenschön, M., Clark, J., Aldridge, J. N., Allen, J. I., Artioli, Y.,
Blackford, J., Bruggeman, J., Cazenave, P., Ciavatta, S., Kay, S., Lessin,
G., van Leeuwen, S., van der Molen, J., de Mora, L., Polimene, L., Sailley,
S., Stephens, N., and Torres, R.: ERSEM 15.06: a generic model for marine
biogeochemistry and the ecosystem dynamics of the lower trophic levels,
Geosci. Model Dev., 9, 1293–1339, https://doi.org/10.5194/gmd-9-1293-2016,
2016. a
Cadée, G. C. and Hegeman, J.: Primary production of the benthic
microflora living on tidal flats in the Dutch Wadden Sea, Neth. J. Sea
Res., 8, 260–291, https://doi.org/10.1016/0077-7579(74)90020-9, 1974. a
Cahill, B., Radtke, H., and Neumann, T.: The role of coastal sediments for
water column dynamics in the Western Baltic Sea, in preparation,
2019. a, b
Cahoon, L. B., Nearhoof, J. E., and Tilton, C. L.: Sediment grain size effect
on benthic microalgal biomass in shallow aquatic ecosystems, Estuaries, 22,
735–741, 1999. a
Canty, A. and Ripley, B.: boot: Bootstrap Functions (Originally by
Angelo Canty for S), available at:
https://CRAN.R-project.org/package=boot (last access: 10 January 2019),
2017. a
Capet, A., Meysman, F. J. R., Akoumianaki, I., Soetaert, K., and
Grégoire, M.:
Integrating sediment biogeochemistry into 3D oceanic models: A study of
benthic-pelagic coupling in the Black Sea, Ocean Model., 101, 83–100,
https://doi.org/10.1016/j.ocemod.2016.03.006, 2016. a
Cerco, C. F., Noel, M. R., and Kim, S.-C.: Three-dimensional management model
for Lake Washington, part II: eutrophication modeling and skill
assessment, Lake Reserv. Manage., 22, 115–131, 2006. a
Christiansen, C., Edelvang, K., Emeis, K., Graf, G., Jähmlich, S.,
Kozuch, J.,
Laima, M., Leipe, T., Löffler, A., Lund-Hansen, L. C., Miltner, A., Pazdro,
K., Pempkowiak, J., Shimmield, G., Shimmield, T., Smith, J., Voss, M., and
Witt, G.: Material transport from the nearshore to the basinal environment in
the southern Baltic Sea: I. Processes and mass estimates, J.
Marine Syst., 35, 133–150, https://doi.org/10.1016/S0924-7963(02)00126-4, 2002. a, b, c, d, e
Cline, J. D.: Spectrophotometric determination of hydrogen sulfide in natural
waters, Limnol. Oceanogr., 14, 454–458, 1969. a
Colijn, F. and De Jonge, V. N.: Primary production of microphytobenthos in the
Ems-Dollard Estuary, Marine ecology progress series, Oldendorf, Germany, 14,
185–196, 1984. a
Davies, C. W.: The extent of dissociation of salts in water. Part VIII.
An equation for the mean ionic activity coefficient of an electrolyte in
water, and a revision of the dissociation constants of some sulphates,
J. Chem. Soc. (Resumed), 0, 2093–2098,
https://doi.org/10.1039/JR9380002093, 1938. a
Davison, A. C. and Hinkley, D. V.: Bootstrap Methods and Their
Application, Cambridge University Press, Cambridge, UK,
1997. a
Deutsch, B., Forster, S., Wilhelm, M., Dippner, J. W., and Voss, M.:
Denitrification in sediments as a major nitrogen sink in the Baltic Sea: an
extrapolation using sediment characteristics, Biogeosciences, 7, 3259–3271,
https://doi.org/10.5194/bg-7-3259-2010, 2010. a
Dickson, A. G. and Goyet, C.: Handbook of methods for the analysis of the
various parameters of the carbon dioxide system in sea water, Version 2,
Tech. rep., Oak Ridge National Lab., TN, USA, 1994. a
Dickson, A. G., Sabine, C. L., and Christian, J. R.: Guide to best practices
for ocean CO2 measurements, Tech. Rep. PICES Special Publication 3,
PICES, Victoria, Canada, 2007. a, b, c, d, e
Drobner, E., Huber, H., Wächtershäuser, G., Rose, D., and Stetter,
K. O.: Pyrite formation linked with hydrogen evolution under anaerobic
conditions, Nature, 346, 742–744, 1990. a
Edzwald, J. K., Toensing, D. C., and Leung, M. C.-Y.: Phosphate adsorption
reactions with clay minerals, Environ. Sci. Technol., 10,
485–490, 1976. a, b
Emeis, K.-C., Struck, U., Leipe, T., Pollehne, F., Kunzendorf, H., and
Christiansen, C.: Changes in the C, N, P burial rates in some Baltic
Sea sediments over the last 150 years–relevance to P regeneration rates
and the phosphorus cycle, Mar. Geol., 167, 43–59, 2000. a
Emeis, K.-C., Christiansen, C., Edelvang, K., Jähmlich, S., Kozuch, J.,
Laima, M., Leipe, T., Loeffler, A., Lund-Hansen, L.-C., Miltner, A., Pazdro,
K., Pempkowiak, J., Pollehne, F., Shimmield, T., Voss, M., and Witt, G.:
Material transport from the near shore to the basinal environment in the
southern Baltic Sea: II: synthesis of data on origin and properties of
material, J. Marine Syst., 35, 151–168, 2002. a, b, c, d
Engel, A.: Direct relationship between CO2 uptake and transparent
exopolymer particles production in natural phytoplankton, J. Plankton Res.,
24, 49–53, https://doi.org/10.1093/plankt/24.1.49, 2002. a
Gadani, D. H., Rana, V. A., Bhatnagar, S. P., Prajapati, A. N., and Vyas,
A. D.: Effect of salinity on the dielectric properties of water, Indian J.
Pure Ap. Phy., 50, 405–410, 2012. a
Gili, J.-M. and Coma, R.: Benthic suspension feeders: their paramount role in
littoral marine food webs, Trends Ecol. Evol., 13, 316–321,
1998. a
Glud, R. N.: Oxygen dynamics of marine sediments, Mar. Biol. Res., 4,
243–289, https://doi.org/10.1080/17451000801888726, 2008. a
Glud, R. N., Woelfel, J., Karsten, U., Kühl, M., and Rysgaard, S.: Benthic
microalgal production in the Arctic: applied methods and status of the
current database, Bot. Mar., 52, 559–571, 2009. a
Gogina, M., Morys, C., Forster, S., Gräwe, U., Friedland, R., and
Zettler,
M. L.: Towards benthic ecosystem functioning maps: Quantifying bioturbation
potential in the German part of the Baltic Sea, Ecol. Indic.,
73, 574–588, https://doi.org/10.1016/j.ecolind.2016.10.025, 2017. a
Graf, G. and Rosenberg, R.: Bioresuspension and biodeposition: a review,
J. Marine Syst., 11, 269–278, 1997. a
Grasshoff, K., Kremling, K., and Ehrhardt, M.: Methods of seawater analysis,
John Wiley & Sons, Weinheim, Germany, 2009. a
Griffies, S.: Fundamentals of ocean climate models, Princeton university
press, Princeton, New Jersey, USA, 2018. a
Guisasola, A., Jubany, I., Baeza, J. A., Carrera, J., and Lafuente, J.:
Respirometric estimation of the oxygen affinity constants for biological
ammonium and nitrite oxidation, J. Chem. Technol. Biot., 80, 388–396,
https://doi.org/10.1002/jctb.1202, 2005. a
Gundersen, J. K. and Jorgensen, B. B.: Microstructure of diffusive boundary
layers and the oxygen uptake of the sea floor, Nature, 345, 604–607, 1990. a
Haines-Young, R. and Potschin, M.: Common International Classification of
Ecosystem Services (CICES): Consultation on Version 4,
August–December 2012, Tech. rep., University of Nottingham, available
at:
https://cices.eu/content/uploads/sites/8/2012/07/CICES-V43_Revised-Final_Report_29012013.pdf
(last access: 10 January 2019), 2013. a
Hamme, R. C. and Emerson, S. R.: The solubility of neon, nitrogen and argon in
distilled water and seawater, Deep-Sea Res. Pt. I, 51, 1517–1528, 2004. a
Hansen, M. H., Ingvorsen, K., and Jøgensen, B. B.: Mechanisms of hydrogen
sulfide release from coastal marine sediments to the atmosphere, Limnol.
Oceanogr., 23, 68–76, https://doi.org/10.4319/lo.1978.23.1.0068, 1978. a
Heiskanen, A.-S. and Leppänen, J.-M.: Estimation of export production in
the
coastal Baltic Sea: effect of resuspension and microbial decomposition on
sedimentation measurements, Hydrobiologia, 316, 211–224, 1995. a
HELCOM: Part A. Introductory Chapters, in: Guidelines for the Baltic
Monitoring Programme for the Third Stage, no. 27A in Baltic Sea
Environment Proceedings, Baltic Marine Environment Protection Commission
– Helsinki Commission, Helsinki, Finland, 1988. a
Hooke, R. and Jeeves, T. A.: “Direct Search” Solution of Numerical
and Statistical Problems, J. ACM, 8, 212–229, 1961. a
Huber, P. J.: Robust statistics, Wiley series in probability and mathematical
statistics, Wiley, New York, USA, 1981. a
Ingall, E. and Jahnke, R.: Influence of water-column anoxia on the elemental
fractionation of carbon and phosphorus during sediment diagenesis, Mar.
Geol., 139, 219–229, 1997. a
IOW: IOWDB – the oceanographic database of IOW, available at:
https://www.io-warnemuende.de/iowdb.html (last access: 10 January
2019), 2017. a
Jaisi, D. P., Dong, H., and Liu, C.: Influence of biogenic Fe (II) on the
extent of microbial reduction of Fe (III) in clay minerals nontronite,
illite, and chlorite, Geochim. Cosmochim. Ac., 71, 1145–1158, 2007. a, b, c, d
Jakobsen, R. and Postma, D.: Formation and solid solution behavior of
Ca-rhodochrosites in marine muds of the Baltic deeps, Geochim. Cosmochim.
Ac., 53, 2639–2648, https://doi.org/10.1016/0016-7037(89)90135-X, 1989. a, b, c
Jilbert, T., Slomp, C. P., Gustafsson, B. G., and Boer, W.: Beyond the
Fe-P-redox connection: preferential regeneration of phosphorus from organic
matter as a key control on Baltic Sea nutrient cycles, Biogeosciences, 8,
1699–1720, https://doi.org/10.5194/bg-8-1699-2011, 2011. a
Jonsson, P., Carman, R., and Wulff, F.: Laminated sediments in the Baltic:
a tool for evaluating nutrient mass balances, Ambio, 19, 152–158, 1990. a
Jørgensen, B. B.: Bacteria and Marine Biogeochemistry, in: Marine
Geochemistry, edited by: Schulz, H. D. and Zabel, M.,
Springer-Verlag, Berlin/Heidelberg, 169–206, https://doi.org/10.1007/3-540-32144-6_5, 2006. a
Kalka, H.: Activity Coefficients (Activity Models), available at:
http://www.aqion.de/site/101#fn:lg (last access: 10 January 2019),
2018. a
Kersten, M., Leipe, T., and Tauber, F.: Storm disturbance of sediment
contaminants at a Hot-Spot in the Baltic Sea assessed by 234Th
radionuclide tracer profiles, Environm. Sci. Technol., 39,
984–990, 2005. a
Kowalski, N., Dellwig, O., Beck, M., Grunwald, M., Dürselen, C.-D.,
Badewien, T. H., Brumsack, H.-J., van Beusekom, J. E., and Böttcher,
M. E.: A comparative study of manganese dynamics in the water column and
sediments of intertidal systems of the North Sea, Estuar. Coast. Shelf
S., 100, 3–17, https://doi.org/10.1016/j.ecss.2011.03.011, 2012. a
Kristensen, E., Ahmed, S. I., and Devol, A. H.: Aerobic and anaerobic
decomposition of organic matter in marine sediment: which is fastest?,
Limnol. Oceanogr., 40, 1430–1437, 1995. a
Kulik, D. A., Kersten, M., Heiser, U., and Neumann, T.: Application of Gibbs
Energy Minimization to Model Early-Diagenetic Solid-Solution
Aqueous-Solution Equilibria Involving Authigenic Rhodochrosites
in Anoxic Baltic Sea Sediments, Aquat. Geochem., 6, 147–199,
2000. a
Kuliński, K., Schneider, B., Hammer, K., Machulik, U., and Schulz-Bull,
D.:
The influence of dissolved organic matter on the acid–base system of the
Baltic Sea, J. Marine Syst., 132, 106–115, 2014. a
Lancelot, C., Spitz, Y., Gypens, N., Ruddick, K., Becquevort, S., Rousseau, V.,
Lacroix, G., and Billen, G.: Modelling diatom and Phaeocystis blooms and
nutrient cycles in the Southern Bight of the North Sea: the MIRO
model, Mar. Ecol. Prog. Ser., 289, 63–78, 2005. a
Large, W. G., McWilliams, J. C., and Doney, S. C.: Oceanic vertical mixing:
A review and a model with a nonlocal boundary layer parameterization, Rev.
Geophys., 32, 363–403, 1994. a
Lee, J.-Y., Tett, P., Jones, K., Jones, S., Luyten, P., Smith, C., and
Wild-Allen, K.: The PROWQM physical–biological model with benthic–pelagic
coupling applied to the northern North Sea, J. Sea Res., 48, 287–331,
https://doi.org/10.1016/S1385-1101(02)00182-X, 2002. a, b
Leipe, T., Tauber, F., Vallius, H., Virtasalo, J., Uścinowicz, S.,
Kowalski,
N., Hille, S., Lindgren, S., and Myllyvirta, T.: Particulate organic carbon
(POC) in surface sediments of the Baltic Sea, Geo.-Mar. Lett., 31,
175–188, 2011. a, b
Leppäranta, M. and Myrberg, K.: Physical oceanography of the Baltic
Sea, Springer Science & Business Media, Berlin/Heidelberg, Germany,
https://doi.org/10.1007/978-3-662-04453-7, 2009. a
Levinton, J. S.: Marine Biology: Function, Biodiversity, Ecology, 4
edn., Oxford University Press, New York, USA, 2013. a
Lijklema, L.: Interaction of orthophosphate with iron (III) and aluminum
hydroxides, Environ. Sci. Technol., 14, 537–541, 1980. a, b
Lipka, M.: Current biogeochemical processes and element fluxes in surface
sediments of temperate marginal seas (Baltic Sea and Black Sea),
PhD thesis, University of Greifswald, Greifswald, Germany, 2018. a, b, c, d, e, f, g
Lipka, M., Woelfel, J., Gogina, M., Kallmeyer, J., Liu, B., Morys, C., Forster,
S., and Böttcher, M. E.: Solute Reservoirs Reflect Variability of
Early Diagenetic Processes in Temperate Brackish Surface
Sediments, Frontiers in Marine Science, 5, 413, https://doi.org/10.3389/fmars.2018.00413, 2018a. a, b
Lipka, M., Wölfel, J., Gogina, M., Liu, B., and Böttcher, M. E.:
Spatiotemporal dynamics in solute reservoirs of temperate brackish surface
sediments, Annual Report 2017, Leibniz Institute for Baltic Sea Research
Warnemuende (IOW), Warnemuende, available at:
https://www.io-warnemuende.de/tl_files/forschung/pdf/IOW-Jahresbericht-2017.pdf
(last access: 10 January 2019), 2018b. a
Llobet-Brossa, E.: Microbial Community Composition of Wadden Sea
Sediments as Revealed by Fluorescence In Situ Hybridization,
Appl. Environ. Microbiol., 64, 2691–2696, 1998. a
Luff, R. and Moll, A.: Seasonal dynamics of the North Sea sediments using a
three-dimensional coupled sediment–water model system, Cont. Shelf
Res., 24, 1099–1127, 2004. a
Maar, M., Møller, E. F., Larsen, J., Madsen, K. S., Wan, Z., She, J.,
Jonasson, L., and Neumann, T.: Ecosystem modelling across a salinity gradient
from the North Sea to the Baltic Sea, Ecol. Model., 222,
1696–1711, https://doi.org/10.1016/j.ecolmodel.2011.03.006, 2011. a
Marcus, N. H.: Minireview: The importance of benthic-pelagic coupling and the
forgotten role of life cycles in coastal aquatic systems, Limnol.
Oceanogr., 43, 763–768, 1998. a
Meire, L., Soetaert, K. E. R., and Meysman, F. J. R.: Impact of global change
on coastal oxygen dynamics and risk of hypoxia, Biogeosciences, 10,
2633–2653, https://doi.org/10.5194/bg-10-2633-2013, 2013. a
Meysman, F. J., Galaktionov, O. S., Gribsholt, B., and Middelburg, J. J.:
Bioirrigation in permeable sediments: Advective pore-water transport
induced by burrow ventilation, Limnol. Oceanogr., 51, 142–156,
2006. a
Meysman, F. J., Malyuga, V. S., Boudreau, B. P., and Middelburg, J. J.: A
generalized stochastic approach to particle dispersal in soils and sediments,
Geochim. Cosmochim. Ac., 72, 3460–3478,
https://doi.org/10.1016/j.gca.2008.04.023, 2008. a
Middelburg, J. J.: A simple rate model for organic matter decomposition in
marine sediments, Geochim. Cosmochim. Ac., 53, 1577–1581, 1989. a, b, c
Millero, F. J.: Thermodynamics of the carbon dioxide system in the oceans,
Geochim. Cosmochim. Ac., 59, 661–677, https://doi.org/10.1016/0016-7037(94)00354-O,
1995. a
Millero, F. J. and Leung, W. H.: The thermodynamics of seawater at one
atmosphere, Am. J. Sci., 276, 1035–1077, https://doi.org/10.2475/ajs.276.9.1035, 1976. a
Millero, F. J., Sotolongo, S., and Izaguirre, M.: The oxidation kinetics of
Fe(II) in seawater, Geochim. Cosmochim. Ac., 51, 793–801,
https://doi.org/10.1016/0016-7037(87)90093-7, 1987. a
Moberg, E. G. and Harding, M. W.: The Boron Content of Sea Water,
Science, 77, 510–510, https://doi.org/10.1126/science.77.2004.510, 1933. a
Morse, J. W., Millero, F. J., Cornwell, J. C., and Rickard, D.: The chemistry
of the hydrogen sulfide and iron sulfide systems in natural waters,
Earth-Sci. Rev., 24, 1–42, https://doi.org/10.1016/0012-8252(87)90046-8, 1987. a, b
Morys, C.: Particle dynamics in sediments of the western Baltic Sea, PhD
thesis, University of Rostock, Rostock, Germany, available at:
http://rosdok.uni-rostock.de/file/rosdok_disshab_0000001661/rosdok_derivate_0000035932/Dissertation_Morys_2017.pdf
(last access: 10 January 2019), 2016. a, b
Morys, C.: Seasonality of bioturbation – what governs the intensity of local
and non-local sediment mixing?, in preparation, 2019. a
Morys, C., Forster, S., and Graf, G.: Variability of bioturbation in various
sediment types and on different spatial scales in the southwestern Baltic
Sea, Mar. Ecol. Prog. Ser., 557, 31–49, https://doi.org/10.3354/meps11837,
2016. a, b, c
Morys, C., Powilleit, M., and Forster, S.: Bioturbation in relation to the
depth distribution of macrozoobenthos in the southwestern Baltic Sea,
Mar. Ecol. Prog. Ser., 579, 19–36, https://doi.org/10.3354/meps12236, 2017. a
Neumann, T.: Towards a 3D-ecosystem model of the Baltic Sea, J.
Marine Syst., 25, 405–419, https://doi.org/10.1016/S0924-7963(00)00030-0, 2000. a
Neumann, T. and Schernewski, G.: Eutrophication in the Baltic Sea and
shifts in nitrogen fixation analyzed with a 3D ecosystem model, J.
Marine Syst., 74, 592–602, 2008. a, b, c
Neumann, T., Siegel, H., and Gerth, M.: A new radiation model for Baltic
Sea ecosystem modelling, J. Marine Syst., 152, 83–91,
https://doi.org/10.1016/j.jmarsys.2015.08.001, 2015. a, b
Neumann, T., Radtke, H., and Seifert, T.: On the importance of Major Baltic
Inflows for oxygenation of the central Baltic Sea, J.
Geophys. Res.-Oceans, 122, 1090–1101,
2017. a, b, c, d, e, f, g
Oliveros-Ramos, R. and Shin, Y.-J.: Calibrar: an R package for fitting
complex ecological models, arXiv preprint arXiv:1603.03141, available at:
https://arxiv.org/abs/1603.03141, (last access: 10 January 2019), 2016. a
Osipov, V. I.: Density of clay minerals, Soil Mech. Found. Eng., 48,
231–240, 2012. a
Paraska, D. W., Hipsey, M. R., and Salmon, S. U.: Sediment diagenesis models:
Review of approaches, challenges and opportunities, Environ. Modell.
Softw., 61, 297–325, https://doi.org/10.1016/j.envsoft.2014.05.011, 2014. a
Pinckney, J. and Zingmark, R. G.: Biomass and production of benthic microalgal
communities in estuarine habitats, Estuaries, 16, 887–897, 1993. a
Raaphorst, W. V. and Malschaert, J. F. P.: Ammonium adsorption in superficial
North Sea sediments, Cont. Shelf Res., 16, 1415–1435,
https://doi.org/10.1016/0278-4343(95)00081-X, 1996. a, b
Radtke, H.: ERGOM-SED-1D, Zenodo, https://doi.org/10.5281/zenodo.2480056, 2018. a
Radtke, H. and Burchard, H.: A positive and multi-element conserving time
stepping scheme for biogeochemical processes in marine ecosystem models,
Ocean Model., 85, 32–41, 2015. a, b, c
Radtke, H., Neumann, T., Voss, M., and Fennel, W.: Modeling pathways of
riverine nitrogen and phosphorus in the Baltic Sea, J.
Geophys. Res., 117, C09024, https://doi.org/10.1029/2012JC008119, 2012. a, b
Reed, D. C., Slomp, C. P., and Gustafssonb, B. G.: Sedimentary phosphorus
dynamics and the evolution of bottom-water hypoxia: A coupled
benthic–pelagic model of a coastal system, Limnol. Oceanogr, 56,
1075–1092, 2011. a, b, c, d, e, f, g, h, i
Rickard, D.: Kinetics of pyrite formation by the H2S oxidation of
iron (II) monosulfide in aqueous solutions between 25 and 125 C: The
rate equation, Geochim. Cosmochim. Ac., 61, 115–134, 1997. a
Rickard, D. and Luther, G. W.: Kinetics of pyrite formation by the
H2S oxidation of iron (II) monosulfide in aqueous solutions
between 25 and 125 C: The mechanism, Geochim. Cosmochim. Ac., 61,
135–147, 1997. a, b
Rickard, D. and Luther, G. W.: Chemistry of Iron Sulfides, Chem. Rev.,
107, 514–562, https://doi.org/10.1021/cr0503658, 2007. a
Rudstam, L. G., Aneer, G., and Hildén, M.: Top-down control in the
pelagic Baltic ecosystem, Dana, 10, 105–129, 1994. a
Rusch, A., Forster, S., and Huettel, M.: Bacteria, diatoms and detritus in an
intertidal sandflat subject to advective transport across the water-sediment
interface, Biogeochemistry, 55, 1–27, 2001. a
Sarazin, G., Michard, G., and Prevot, F.: A rapid and accurate spectroscopic
method for alkalinity measurements in sea water samples, Water Res., 33,
290–294, 1999. a
Sawicka, J. E., Jørgensen, B. B., and Brüchert, V.: Temperature
characteristics of bacterial sulfate reduction in continental shelf and slope
sediments, Biogeosciences, 9, 3425–3435,
https://doi.org/10.5194/bg-9-3425-2012, 2012. a
Schippers, A. and Jørgensen, B. B.: Biogeochemistry of pyrite and iron
sulfide oxidation in marine sediments, Geochim. Cosmochim. Ac., 66, 85–92,
2002. a
Schmidt, M. and Eggert, A.: Oxygen cycling in the northern Benguela
Upwelling System: Modelling oxygen sources and sinks, Prog.
Oceanogr., 149, 145–173, 2016. a
Schneider, B., Nausch, G., and Pohl, C.: Mineralization of organic matter and
nitrogen transformations in the Gotland Sea deep water, Mar. Chem.,
119, 153–161, https://doi.org/10.1016/j.marchem.2010.02.004, 2010. a
Schulz, J.-P. and Schattler, U.: Kurze Beschreibung des Lokal-Modells
Europa COSMO-EU (LME) und seiner Datenbanken auf dem Datenserver
des DWD, Tech. rep., German Weather Service, available at:
prefixhttps://www.dwd.de/SharedDocs/downloads/DE/modelldokumentationen/nwv/cosmo_eu/cosmo_eu_dbbeschr_201406.pdf
(last access: 10 January 2019), 2014. a
Seitzinger, S. P., Nixon, S. W., and Pilson, M. E.: Denitrification and nitrous
oxide production in a coastal marine ecosystem, Limnol. Oceanogr.,
29, 73–83, 1984. a
Soetaert, K. and Middelburg, J. J.: Modeling eutrophication and
oligotrophication of shallow-water marine systems: the importance of
sediments under stratified and well-mixed conditions, in: Eutrophication in
Coastal Ecosystems, 239–254, Springer, Dordrecht, the Netherlands, 2009. a
Soetaert, K., Herman, P. M., and Middelburg, J. J.: A model of early diagenetic
processes from the shelf to abyssal depths, Geochim. Cosmochim. Ac.,
60, 1019–1040, 1996a. a
Soetaert, K., Herman, P. M., Middelburg, J. J., Heip, C., deStigter, H. S.,
van Weering, T. C., Epping, E., and Helder, W.: Modeling 210Pb-derived mixing
activity in ocean margin sediments: diffusive versus nonlocal mixing, J. Mar.
Res., 54, 1207–1227, 1996b. a, b, c
Soetaert, K., Herman, P. M., Middelburg, J. J., Heip, C., Smith, C. L., Tett,
P., and Wild-Allen, K.: Numerical modelling of the shelf break ecosystem:
reproducing benthic and pelagic measurements, Deep-Sea Res. Pt. II, 48, 3141–3177, 2001. a, b
Sohma, A., Sekiguchi, Y., Kuwae, T., and Nakamura, Y.: A benthic–pelagic
coupled ecosystem model to estimate the hypoxic estuary including tidal
flat – Model description and validation of seasonal/daily dynamics,
Ecol. Model., 215, 10–39, https://doi.org/10.1016/j.ecolmodel.2008.02.027, 2008. a
Sohma, A., Shibuki, H., Nakajima, F., Kubo, A., and Kuwae, T.: Modeling a
coastal ecosystem to estimate climate change mitigation and a model
demonstration in Tokyo Bay, Ecol. Model., 384, 261–289, 2018. a
Stephenson, M. and Stickland, L. H.: Hydrogenase: The reduction of sulphate
to sulphide by molecular hydrogen, Biochem. J., 25, 215–220, 1931. a
Struck, U., Pollehne, F., Bauerfeind, E., and v. Bodungen, B.: Sources of
nitrogen for the vertical particle flux in the Gotland Sea (Baltic
Proper) – results from sediment trap studies, J. Marine Syst.,
45, 91–101, https://doi.org/10.1016/j.jmarsys.2003.11.012, 2004. a
Stumm, W. and Morgan, J. J.: Aquatic chemistry: chemical equilibria and rates
in natural waters, vol. 126, John Wiley & Sons, Hoboken, New Jersey, USA, 2012. a
Sun, M., Aller, R. C., and Lee, C.: Early diagenesis of chlorophyll-a in
Long
Island Sound sediments: A measure of carbon flux and particle
reworking, J. Mar. Res., 49, 379–401, 1991. a
Sunagawa, I.: Nucleation, Growth And Dissolution Of
Crystals During Sedimentogenesis and Diagenesis, chap. 2, in: Developments in
Sedimentology, edited by: Wolf, K. H. and Chilingarian, G. V., vol. 51 of
Diagenesis, IV, 19–47, Elsevier,
https://doi.org/10.1016/S0070-4571(08)70435-7,1994. a
Sundby, B., Gobeil, C., Silverberg, N., and Mucci, A.: The phosphorus cycle in
coastal marine sediments, Limnol. Oceanogr, 37, 1129–1145, 1992. a, b
Tauber, F.: Online-Karte: Sedimentverteilung auf dem Meeresboden, available
at:
https://www.geoseaportal.de/mapapps/resources/apps/sedimentverteilung_auf_dem_meeresboden/index.html?lang=de
(last access: 10 January 2019), 2012. a
Thamdrup, B., Hansen, J. W., and Jørgensen, B. B.: Temperature dependence
of
aerobic respiration in a coastal sediment, FEMS Microbiol. Ecol., 25,
189–200, https://doi.org/10.1111/j.1574-6941.1998.tb00472.x,
1998. a
Theberge, S. M. and Iii, G. W. L.: Determination of the Electrochemical
Properties of a Soluble Aqueous FeS Species Present in Sulfidic
Solutions, Aquat. Geochem., 3, 191–211,
https://doi.org/10.1023/A:1009648026806,
1997. a
Turekian, K. K.: Oceans, Prentice-Hall, Upper Saddle River, New Jersey, USA,
1968. a
Ulfsbo, A., Kuliński, K., Anderson, L. G., and Turner, D. R.: Modelling
organic alkalinity in the Baltic Sea using a Humic-Pitzer approach,
Mar. Chem., 168, 18–26, 2015. a
Uppala, S. M., Kållberg, P. W., Simmons, A. J., Andrae, U., Bechtold,
V. d., Fiorino, M., Gibson, J. K., Haseler, J., Hernandez, A., and Kelly,
G. A.: The ERA-40 re-analysis, Q. J. Roy.
Meteor. Soc., 131, 2961–3012, 2005. a
van Cappellen, P. and Wang, Y.: Cycling of iron and manganese in surface
sediments; a general theory for the coupled transport and reaction of carbon,
oxygen, nitrogen, sulfur, iron, and manganese, Am. J. Sci.,
296, 197–243, https://doi.org/10.2475/ajs.296.3.197, 1996. a, b, c, d
van de Bund, W. J., Ólafsson, E., Modig, H., and Elmgren, R.: Effects of
the
coexisting Baltic amphipods Monoporeia affinis and Pontoporeia femorata
on the fate of a simulated spring diatom bloom, Mar. Ecol. Prog.
Ser., 212, 107–115, 2001. a
Venables, W. N. and Ripley, B. D.: Modern Applied Statistics with S,
Springer, New York, USA, 2002. a
Voss, M. and Struck, U.: Stable nitrogen and carbon isotopes as indicator of
eutrophication of the Oder river (Baltic Sea), Mar. Chem., 59,
35–49, 1997. a
Wasmund, N.: Occurrence of cyanobacterial blooms in the Baltic Sea in
relation to environmental conditions, Int. Rev. Hydrobiol.,
82, 169–184, 1997. a
Weisse, R., von Storch, H., Callies, U., Chrastansky, A., Feser, F., Grabemann,
I., Guenther, H., Plüss, A., Stoye, T., and Tellkamp, J.:
Regional meteorological–marine Reanalyses and climate change projections:
Results for Northern Europe and potential for coastal and offshore
applications, B. Am. Meteorol. Soc., 90, 849–860,
2009. a
Werner, U., Billerbeck, M., Polerecky, L., Franke, U., Huettel, M.,
Van Beusekom, J. E., and De Beer, D.: Spatial and temporal patterns of
mineralization rates and oxygen distribution in a permeable intertidal sand
flat (Sylt, Germany), Limnol. Oceanogr., 51, 2549–2563, 2006. a
Westrich, J. T. and Berner, R. A.: The role of sedimentary organic matter in
bacterial sulfate reduction: the G model tested, Limnol.
Oceanogr., 29, 236–249, 1984. a
Wijsman, J. W. M., Herman, P. M. J., Middelburg, J. J., and Soetaert, K.: A
Model for Early Diagenetic Processes in Sediments of the
Continental Shelf of the Black Sea, Estuar. Coast. Shelf
S., 54, 403–421, https://doi.org/10.1006/ecss.2000.0655, 2002. a, b
Winde, V., Böttcher, M., Escher, P., Böning, P., Beck, M., Liebezeit,
G., and
Schneider, B.: Tidal and spatial variations of DI13C and aquatic chemistry
in a temperate tidal basin during winter time, J. Marine Syst.,
129, 396–404, https://doi.org/10.1016/j.jmarsys.2013.08.005, 2014. a
Winkler, L. W.: Die Bestimmung des im Wasser gelösten Sauerstoffes,
Ber. Dtsch. Chem. Ges., 21, 2843–2854,
https://doi.org/10.1002/cber.188802102122, 1888.
a
Yakushev, E. V., Protsenko, E. A., Bruggeman, J., Wallhead, P., Pakhomova, S.
V., Yakubov, S. Kh., Bellerby, R. G. J., and Couture, R.-M.: Bottom RedOx
Model (BROM v.1.1): a coupled benthic–pelagic model for simulation of water
and sediment biogeochemistry, Geosci. Model Dev., 10, 453–482,
https://doi.org/10.5194/gmd-10-453-2017, 2017. a