Articles | Volume 12, issue 7
https://doi.org/10.5194/gmd-12-3045-2019
https://doi.org/10.5194/gmd-12-3045-2019
Development and technical paper
 | 
17 Jul 2019
Development and technical paper |  | 17 Jul 2019

Incorporating wind sheltering and sediment heat flux into 1-D models of small boreal lakes: a case study with the Canadian Small Lake Model V2.0

Murray D. MacKay

Related authors

The Canadian Atmospheric Model version 5 (CanAM5.0.3)
Jason Neil Steven Cole, Knut von Salzen, Jiangnan Li, John Scinocca, David Plummer, Vivek Arora, Norman McFarlane, Michael Lazare, Murray MacKay, and Diana Verseghy
Geosci. Model Dev., 16, 5427–5448, https://doi.org/10.5194/gmd-16-5427-2023,https://doi.org/10.5194/gmd-16-5427-2023, 2023
Short summary
Parameter sensitivity analysis of a 1-D cold region lake model for land-surface schemes
José-Luis Guerrero, Patricia Pernica, Howard Wheater, Murray Mackay, and Chris Spence
Hydrol. Earth Syst. Sci., 21, 6345–6362, https://doi.org/10.5194/hess-21-6345-2017,https://doi.org/10.5194/hess-21-6345-2017, 2017
Short summary

Related subject area

Climate and Earth system modeling
The Canadian Atmospheric Model version 5 (CanAM5.0.3)
Jason Neil Steven Cole, Knut von Salzen, Jiangnan Li, John Scinocca, David Plummer, Vivek Arora, Norman McFarlane, Michael Lazare, Murray MacKay, and Diana Verseghy
Geosci. Model Dev., 16, 5427–5448, https://doi.org/10.5194/gmd-16-5427-2023,https://doi.org/10.5194/gmd-16-5427-2023, 2023
Short summary
The Teddy tool v1.1: temporal disaggregation of daily climate model data for climate impact analysis
Florian Zabel and Benjamin Poschlod
Geosci. Model Dev., 16, 5383–5399, https://doi.org/10.5194/gmd-16-5383-2023,https://doi.org/10.5194/gmd-16-5383-2023, 2023
Short summary
Assimilation of the AMSU-A radiances using the CESM (v2.1.0) and the DART (v9.11.13)–RTTOV (v12.3)
Young-Chan Noh, Yonghan Choi, Hyo-Jong Song, Kevin Raeder, Joo-Hong Kim, and Youngchae Kwon
Geosci. Model Dev., 16, 5365–5382, https://doi.org/10.5194/gmd-16-5365-2023,https://doi.org/10.5194/gmd-16-5365-2023, 2023
Short summary
Modernizing the open-source community Noah with multi-parameterization options (Noah-MP) land surface model (version 5.0) with enhanced modularity, interoperability, and applicability
Cenlin He, Prasanth Valayamkunnath, Michael Barlage, Fei Chen, David Gochis, Ryan Cabell, Tim Schneider, Roy Rasmussen, Guo-Yue Niu, Zong-Liang Yang, Dev Niyogi, and Michael Ek
Geosci. Model Dev., 16, 5131–5151, https://doi.org/10.5194/gmd-16-5131-2023,https://doi.org/10.5194/gmd-16-5131-2023, 2023
Short summary
Simulated stable water isotopes during the mid-Holocene and pre-industrial periods using AWI-ESM-2.1-wiso
Xiaoxu Shi, Alexandre Cauquoin, Gerrit Lohmann, Lukas Jonkers, Qiang Wang, Hu Yang, Yuchen Sun, and Martin Werner
Geosci. Model Dev., 16, 5153–5178, https://doi.org/10.5194/gmd-16-5153-2023,https://doi.org/10.5194/gmd-16-5153-2023, 2023
Short summary

Cited articles

Bradley, E. F.: A micrometeorological study of velocity profiles and surface drag in the region modified by a change in surface roughness, Q. J. Roy. Meteorol. Soc., 94, 361–379, 1968. 
Carslaw, H. S. and Jaeger, J. C.: Conduction of Heat in Solids, Oxford Science Publications, Oxford, England, 1959. 
Detto, M., Katul, G. G., Siqueira, M., Juang, J.-Y., and Stoy, P.: The structure of turbulence near a tall forest edge: the backward-facing step flow analogy revisited, Ecol. Appl., 18, 1420–1435, 2008. 
Driver, D. M. and Seegmiller, H. L.: Features of a reattaching turbulent shear layer in divergent channel flow, AIAA, 23, 163–171, 1985. 
Fee, E., Hecky, R., Kasian, S., and Cruikshank, D.: Effects of lake size, water clarity, and climatic variability on mixing depths in Canadian Shield lakes, Limnol. Oceanogr., 41, 912–920, 1996. 
Download
Short summary
Lakes interact with their surroundings through flux exchange at their bottom sediments and with the atmosphere at the surface, and these linkages must be represented in climate and weather prediction models in order to completely elucidate the role of lakes in the climate system. Here schemes for the inclusion of wind sheltering and sediment heat flux simple enough to be included in any 1-D lake model are presented, along with example simulations of the Canadian Small Lake Model.