Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.154 IF 5.154
  • IF 5-year value: 5.697 IF 5-year
    5.697
  • CiteScore value: 5.56 CiteScore
    5.56
  • SNIP value: 1.761 SNIP 1.761
  • IPP value: 5.30 IPP 5.30
  • SJR value: 3.164 SJR 3.164
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 59 Scimago H
    index 59
  • h5-index value: 49 h5-index 49
GMD | Articles | Volume 12, issue 1
Geosci. Model Dev., 12, 321-342, 2019
https://doi.org/10.5194/gmd-12-321-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Geosci. Model Dev., 12, 321-342, 2019
https://doi.org/10.5194/gmd-12-321-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Development and technical paper 21 Jan 2019

Development and technical paper | 21 Jan 2019

Assessing bias corrections of oceanic surface conditions for atmospheric models

Julien Beaumet et al.
Related authors  
Effect of uncertainties of Southern Ocean surface temperature and sea-ice change on Antarctic climate projections
Julien Beaumet, Michel Déqué, Gerhard Krinner, Cécile Agosta, and Antoinette Alias
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-231,https://doi.org/10.5194/tc-2018-231, 2018
Manuscript under review for TC
Short summary
Related subject area  
Climate and Earth System Modeling
Quantitative stratigraphic analysis in a source-to-sink numerical framework
Xuesong Ding, Tristan Salles, Nicolas Flament, and Patrice Rey
Geosci. Model Dev., 12, 2571-2585, https://doi.org/10.5194/gmd-12-2571-2019,https://doi.org/10.5194/gmd-12-2571-2019, 2019
Short summary
The UKC3 regional coupled environmental prediction system
Huw W. Lewis, Juan Manuel Castillo Sanchez, Alex Arnold, Joachim Fallmann, Andrew Saulter, Jennifer Graham, Mike Bush, John Siddorn, Tamzin Palmer, Adrian Lock, John Edwards, Lucy Bricheno, Alberto Martínez-de la Torre, and James Clark
Geosci. Model Dev., 12, 2357-2400, https://doi.org/10.5194/gmd-12-2357-2019,https://doi.org/10.5194/gmd-12-2357-2019, 2019
Short summary
The Monash Simple Climate Model experiments (MSCM-DB v1.0): an interactive database of mean climate, climate change, and scenario simulations
Dietmar Dommenget, Kerry Nice, Tobias Bayr, Dieter Kasang, Christian Stassen, and Michael Rezny
Geosci. Model Dev., 12, 2155-2179, https://doi.org/10.5194/gmd-12-2155-2019,https://doi.org/10.5194/gmd-12-2155-2019, 2019
Short summary
Evaluation of the WRF lake module (v1.0) and its improvements at a deep reservoir
Fushan Wang, Guangheng Ni, William J. Riley, Jinyun Tang, Dejun Zhu, and Ting Sun
Geosci. Model Dev., 12, 2119-2138, https://doi.org/10.5194/gmd-12-2119-2019,https://doi.org/10.5194/gmd-12-2119-2019, 2019
Short summary
Calculating the turbulent fluxes in the atmospheric surface layer with neural networks
Lukas Hubert Leufen and Gerd Schädler
Geosci. Model Dev., 12, 2033-2047, https://doi.org/10.5194/gmd-12-2033-2019,https://doi.org/10.5194/gmd-12-2033-2019, 2019
Short summary
Cited articles  
Agosta, C., Favier, V., Krinner, G., Gallée, H., Fettweis, X., and Genthon, C.: High-resolution modelling of the Antarctic surface mass balance, application for the twentieth, twenty first and twenty second centuries, Clim. Dynam., 41, 3247–3260, https://doi.org/10.1007/s00382-013-1903-9, 2013. a, b
Ashfaq, M., Skinner, C. B., and Diffenbaugh, N. S.: Influence of SST biases on future climate change projections, Clim. Dynam., 36, 1303–1319, https://doi.org/10.1007/s00382-010-0875-2, 2011. a, b, c, d, e, f
Baumberger, C., Knutti, R., and Hirsch Hadorn, G.: Building confidence in climate model projections: an analysis of inferences from fit, WIREs Clim. Change, 8, e454, https://doi.org/10.1002/wcc.454, 2017. a
Beaumet, J. and Krinner, G.: SSC Bias correction – Source code, OSF, https://doi.org/10.17605/OSF.IO/EFUY2, 2018a. a
Beaumet, J. and Krinner, G.: SSC Bias correction – Data, OSF, https://doi.org/10.17605/OSF.IO/GMH8C, 2018a. a
Publications Copernicus
Download
Short summary
Oceanic surface conditions coming from coupled ocean–atmosphere global climate models bear considerable biases over the historical climate. We review and present new methods for bias correcting sea surface temperatures and sea-ice concentration coming from such models in order to use them as boundary conditions for atmospheric-only GCMs. For sea ice, we propose a new analogue method which allows us to reproduce more physically consistent future bias-corrected sea-ice concentration maps.
Oceanic surface conditions coming from coupled ocean–atmosphere global climate models bear...
Citation