Abida, R.: Static and mobile networks design for atmospheric accidental
releases monitoring, Theses, Ecole des Ponts ParisTech, available at:
https://pastel.archives-ouvertes.fr/pastel-00638050 (last access: July 2016), 2010. a

Abida, R. and Bocquet, M.: Targeting of observations for accidental atmospheric
release monitoring, Atmos. Environ., 43, 6312–6327,
https://doi.org/10.1016/j.atmosenv.2009.09.029,
2009. a

Abida, R., Bocquet, M., Vercauteren, N., and Isnard, O.: Design of a monitoring network over France in case of a radiological accidental release, Atmos. Environ., 42, 5205–5219,
https://doi.org/10.1016/j.atmosenv.2008.02.065,
2008. a, b

Beljaars, A. and Holtslag, A.: Flux parameterization over land surfaces for
atmospheric models, J. Appl. Meteorol., 30, 327–341,
https://doi.org/10.1175/1520-0450(1991)030<0327:FPOLSF>2.0.CO;2,
1991. a

Biltoft, C. A.: Customer Report for Mock Urban Setting Test, Tech.
rep., West Desert Test Center, U.S. Army Dugway Proving Ground, Dugway, Utah, USA, 2001. a, b, c

Bocquet, M.: Reconstruction of an atmospheric tracer source using the principle of maximum entropy. I: Theory, Q. J. Roy.
Meteor. Soc., 131, 2191–2208, https://doi.org/10.1256/qj.04.67, 2005. a

Cohn, H. and Fielding, M.: Simulated Annealing: Searching for an Optimal
Temperature Schedule, SIAM J. Optimiz., 9, 779–802,
https://doi.org/10.1137/S1052623497329683, 1999. a, b

Efthimiou, G. C., Kovalets, I. V., Venetsanos, A., Andronopoulos, S.,
Argyropoulos, C. D., and Kakosimos, K.: An optimized inverse modelling method
for determining the location and strength of a point source releasing
airborne material in urban environment, Atmos. Environ., 170, 118–129, https://doi.org/10.1016/j.atmosenv.2017.09.034,
2017. a, b

Gamerman, D. and Lopes, H. F.: Markov chain Monte Carlo: stochastic simulation
for Bayesian inference, CRC Press, New York, USA, 2006. a

Gryning, S.-E., Batchvarova, E., Brummer, B., Jorgensen, H., and Larsen, S.: On the extension of the wind profile over homogeneous terrain beyond the surface boundary layer, Bound.-Lay. Meteorol., 124, 251–268,
https://doi.org/10.1007/s10546-007-9166-9, 2007. a

Haupt, S. E., Young, G. S., and Allen, C. T.: Validation of a
receptor-dispersion model coupled with a genetic algorithm using synthetic
data, J. Appl. Meteorol. Clim., 45, 476–490,
https://doi.org/10.1175/JAM2359.1,
2006. a

Hourdin, F. and Talagrand, O.: Eulerian backtracking of atmospheric tracers.
I: Adjoint derivation and parametrization of subgrid-scale transport,
Q. J. Roy. Meteor. Soc., 132, 567–583,
https://doi.org/10.1256/qj.03.198.A, 2006. a

Hutchinson, M., Oh, H., and Chen, W.-H.: A review of source term estimation
methods for atmospheric dispersion events using static or mobile sensors,
Inform. Fusion, 36, 130–148,
https://doi.org/10.1016/j.inffus.2016.11.010,
2017. a

Issartel, J.-P.: Emergence of a tracer source from air concentration measurements, a new strategy for linear assimilation, Atmos. Chem. Phys., 5, 249–273, https://doi.org/10.5194/acp-5-249-2005, 2005. a, b, c

Issartel, J.-P., Sharan, M., and Modani, M.: An inversion technique to retrieve
the source of a tracer with an application to synthetic satellite
measurements, P. Roy. Soc. Lond. A Mat., 463, 2863–2886,
https://doi.org/10.1098/rspa.2007.1877,
2007. a, b, c, d, e

Issartel, J.-P., Sharan, M., and Singh, S. K.: Identification of a Point of
Release by Use of Optimally Weighted Least Squares, Pure Appl.
Geophys., 169, 467–482, https://doi.org/10.1007/s00024-011-0381-4, 2012. a, b, c, d

Jiang, Z., de Bruin, S., Heuvelink, G., and Twenhöfel, C.: Optimization of mobile radioactivity monitoring networks, Fifth International Symposium on Spatial Data Quality, 13–15 June 2007, Enschede, the Netherlands, available at:
http://edepot.wur.nl/24174 (last access: March 2015), 2007. a

Keats, W. A.: Bayesian inference for source determination in the atmospheric
environment, PhD thesis, http://hdl.handle.net/10012/4317 (last access: July 2016),
2009. a

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P.: Optimization by Simulated
Annealing, Science, 220, 671–680, https://doi.org/10.1126/science.220.4598.671, 1983. a, b

Ko, C.-W., Lee, J., and Queyranne, M.: An Exact Algorithm for Maximum Entropy
Sampling, Oper. Res., 43, 684–691, https://doi.org/10.1287/opre.43.4.684, 1995. a

Kouichi, H.: Sensors networks optimization for the characterization of
atmospheric releases source, Theses, Université Paris Saclay, France, available at:
https://hal.archives-ouvertes.fr/tel-01593834 (last access: January 2018), 2017. a, b, c, d, e, f

Kouichi, H., Turbelin, G., Ngae, P., Feiz, A., Barbosa, E., and Chpoun, A.:
Optimization of sensor networks for the estimation of atmospheric pollutants
sources, WIT Trans. Ecol. Envir., 207, 11–21, 2016. a

Kouichi, H., Ngae, P., Kumar, P., Feiz, A.-A., and Bekka, N.: Matlab code for an optimization for reducing the size of an existing urban-like monitoring network for retrieving an unknown point source emission, Zenodo, https://doi.org/10.5281/zenodo.3269751, 2019. a

Kovalets, I. V., Andronopoulos, S., Venetsanos, A. G., and Bartzis, J. G.:
Identification of strength and location of stationary point source of
atmospheric pollutant in urban conditions using computational fluid dynamics
model, Math. Comput. Simulat., 82, 244–257,
https://doi.org/10.1016/j.matcom.2011.07.002,
2011. a

Kumar, P., Feiz, A.-A., Ngae, P., Singh, S. K., and Issartel, J.-P.: CFD
simulation of short-range plume dispersion from a point release in an urban
like environment, Atmos. Environ., 122, 645–656,
https://doi.org/10.1016/j.atmosenv.2015.10.027,
2015a. a, b, c, d

Kumar, P., Feiz, A.-A., Singh, S. K., Ngae, P., and Turbelin, G.:
Reconstruction of an atmospheric tracer source in an urban-like environment,
J. Geophys. Res.-Atmos., 120, 12589–12604,
https://doi.org/10.1002/2015JD024110, 2015b. a, b, c, d, e, f

Kumar, P., Singh, S. K., Feiz, A.-A., and Ngae, P.: An urban scale inverse
modelling for retrieving unknown elevated emissions with building-resolving
simulations, Atmos. Environ., 140, 135–146,
https://doi.org/10.1016/j.atmosenv.2016.05.050,
2016. a, b

Ma, D., Deng, J., and Zhang, Z.: Comparison and improvements of optimization
methods for gas emission source identification, Atmos. Environ., 81,
188–198, https://doi.org/10.1016/j.atmosenv.2013.09.012,
2013. a, b

Ma, D., Tan, W., Zhang, Z., and Hu, J.: Parameter identification for continuous
point emission source based on Tikhonov regularization method coupled with
particle swarm optimization algorithm, J. Hazard. Mater., 325,
239–250, https://doi.org/10.1016/j.jhazmat.2016.11.071,
2017. a

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and
Teller, E.: Equation of State Calculations by Fast Computing Machines,
J. Chem. Phys., 21, 1087–1092, https://doi.org/10.1063/1.1699114, 1953. a

Monache, L. D., Lundquist, J. K., Kosović, B., Johannesson, G., Dyer, K. M.,
Aines, R. D., Chow, F. K., Belles, R. D., Hanley, W. G., Larsen, S. C.,
Loosmore, G. A., Nitao, J. J., Sugiyama, G. A., and Vogt, P. J.: Bayesian
Inference and Markov Chain Monte Carlo Sampling to Reconstruct a Contaminant
Source on a Continental Scale, J. Appl. Meteorol.
Clim., 47, 2600–2613, https://doi.org/10.1175/2008JAMC1766.1, 2008. a

Ngae, P., Kouichi, H., Kumar, P., Feiz, A.-A., and Chpoun, A.: Optimization of an urban monitoring network for emergency response applications: An approach for characterizing the source of hazardous releases, Q. J. Roy. Meteor. Soc., 145, 967–981, 2019. a, b, c

Nourani, Y. and Andresen, B.: A comparison of simulated annealing cooling
strategies, J. Phys. A-Math. Gen., 31, 8373,
https://doi.org/10.1088/0305-4470/31/41/011, 1998. a, b, c

Penenko, V., Baklanov, A., and Tsvetova, E.: Methods of sensitivity theory and inverse modeling for estimation of source parameters, Future Gener.
Comp. Sy., 18, 661–671, https://doi.org/10.1016/S0167-739X(02)00031-6, 2002. a

Pudykiewicz, J. A.: Application of adjoint tracer transport equations for
evaluating source parameters, Atmos. Environ., 32, 3039–3050,
https://doi.org/10.1016/S1352-2310(97)00480-9,
1998. a, b

Qu, Y., Milliez, M., Musson-Genon, L., and Carissimo, B.: Micrometeorological
Modeling of Radiative and Convective Effects with a Building-Resolving Code,
J. Appl. Meteorol. Clim., 50, 1713–1724,
https://doi.org/10.1175/2011JAMC2620.1, 2011. a, b

Rao, K. S.: Source estimation methods for atmospheric dispersion, Atmos.
Environ., 41, 6964–6973,
https://doi.org/10.1016/j.atmosenv.2007.04.064,
2007. a

Saunier, O., Bocquet, M., Mathieu, A., and Isnard, O.: Model reduction via
principal component truncation for the optimal design of atmospheric
monitoring networks, Atmos. Environ., 43, 4940–4950,
https://doi.org/10.1016/j.atmosenv.2009.07.011,
2009. a

Seibert, P.: Inverse Modelling with a Lagrangian Particle Disperion Model:
Application to Point Releases Over Limited Time Intervals,
Springer US, Boston, MA, USA, 381–389, https://doi.org/10.1007/0-306-47460-3_38, 2001. a

Seibert, P. and Frank, A.: Source-receptor matrix calculation with a Lagrangian particle dispersion model in backward mode, Atmos. Chem. Phys., 4, 51–63, https://doi.org/10.5194/acp-4-51-2004, 2004. a

Sharan, M., Issartel, J.-P., Singh, S. K., and Kumar, P.: An inversion
technique for the retrieval of single-point emissions from atmospheric
concentration measurements, P. Roy. Soc. Lond. A
Mat., 465, 2069–2088, https://doi.org/10.1098/rspa.2008.0402, 2009. a, b, c, d, e

Sharan, M., Singh, S. K., and Issartel, J.-P.: Least Square Data Assimilation
for Identification of the Point Source Emissions, Pure Appl.
Geophys., 169, 483–497, https://doi.org/10.1007/s00024-011-0382-3, 2012. a, b, c, d

Siarry, P.: Métaheuristiques: Recuits simulé, recherche avec tabous,
recherche à voisinages variables, méthodes GRASP, algorithmes
évolutionnaires, fourmis artificielles, essaims particulaires et autres
méthodes d'optimisation, Editions Eyrolles, Paris, France, 2014. a, b

Siarry, P.: Simulated Annealing, Springer International Publishing, Cham, 19–50, https://doi.org/10.1007/978-3-319-45403-0_2, 2016. a

Wang, B., Chen, B., and Zhao, J.: The real-time estimation of hazardous gas
dispersion by the integration of gas detectors, neural network and gas
dispersion models, J. Hazard. Mater., 300, 433–442,
https://doi.org/10.1016/j.jhazmat.2015.07.028,
2015. a

Yang, Y., Gu, M., Chen, S., and Jin, X.: New inflow boundary conditions for
modelling the neutral equilibrium atmospheric boundary layer in computational
wind engineering, J. Wind Eng. Ind. Aerod.,
97, 88–95, https://doi.org/10.1016/j.jweia.2008.12.001,
2009. a

Yee, E. and Biltoft, C.: Concentration Fluctuation Measurements in a Plume
Dispersing Through a Regular Array of Obstacles, Bound.-Lay. Meteorol.,
111, 363–415, https://doi.org/10.1023/B:BOUN.0000016496.83909.ee,
2004. a, b, c

Yee, E., Hoffman, I., and Ungar, K.: Bayesian Inference for Source
Reconstruction: A Real-World Application, International Scholarly Research
Notices, 2014, 1–12, https://doi.org/10.1155/2014/507634, 2014. a

Zhang, X., Raskob, W., Landman, C., Trybushnyi, D., and Li, Y.: Sequential
multi-nuclide emission rate estimation method based on gamma dose rate
measurement for nuclear emergency management, J. Hazard. Mater.,
325, 288–300, https://doi.org/10.1016/j.jhazmat.2016.10.072,
2017. a

Zhang, X. L., Su, G. F., Yuan, H. Y., Chen, J. G., and Huang, Q. Y.: Modified
ensemble Kalman filter for nuclear accident atmospheric dispersion:
Prediction improved and source estimated, J. Hazard. Mater.,
280, 143–155, https://doi.org/10.1016/j.jhazmat.2014.07.064,
2014.
a, b

Zhang, X. L., Su, G. F., Chen, J. G., Raskob, W., Yuan, H. Y., and Huang,
Q. Y.: Iterative ensemble Kalman filter for atmospheric dispersion in nuclear
accidents: An application to Kincaid tracer experiment, J. Hazard. Mater., 297, 329–339, https://doi.org/10.1016/j.jhazmat.2015.05.035, 2015. a, b