Albrecht, T., Martin, M., Haseloff, M., Winkelmann, R., and Levermann, A.:
Parameterization for subgrid-scale motion of ice-shelf calving fronts, The
Cryosphere, 5, 35–44, https://doi.org/10.5194/tc-5-35-2011, 2011. a, b
Arthern, R. J. and Williams, C. R.: The sensitivity of West Antarctica to the
submarine melting feedback, Geophys. Res. Lett., 44, 2352–2359,
https://doi.org/10.1002/2017GL072514, 2017. a
Arthern, R. J., Hindmarsh, R. C. A., and Williams, C. R.: Flow speed within
the
Antarctic ice sheet and its controls inferred from satellite observations, J.
Geophys. Res.-Earth, 120, 1171–1188, https://doi.org/10.1002/2014JF003239, 2015. a
Asay-Davis, X. S., Cornford, S. L., Durand, G., Galton-Fenzi, B. K.,
Gladstone, R. M., Gudmundsson, G. H., Hattermann, T., Holland, D. M.,
Holland, D., Holland, P. R., Martin, D. F., Mathiot, P., Pattyn, F., and
Seroussi, H.: Experimental design for three interrelated marine ice sheet and
ocean model intercomparison projects: MISMIP v. 3 (MISMIP +), ISOMIP v. 2
(ISOMIP +) and MISOMIP v. 1 (MISOMIP1), Geosci. Model Dev., 9, 2471–2497,
https://doi.org/10.5194/gmd-9-2471-2016, 2016. a
Asay-Davis, X. S., Jourdain, N. C., and Nakayama, Y.: Developments in
simulating and parameterizing interactions between the Southern Ocean and the
Antarctic Ice Sheet, Curr. Clim. Change Rep., 3, 316–329,
https://doi.org/10.1007/s40641-017-0071-0, 2017. a
Aschwanden, A., Aðalgeirsdóttir, G., and Khroulev, C.: Hindcasting to measure ice sheet model sensitivity to initial states, The Cryosphere, 7, 1083–1093, https://doi.org/10.5194/tc-7-1083-2013, 2013. a
Aschwanden, A., Fahnestock, M. A., and Truffer, M.: Complex Greenland outlet
glacier flow captured, Nat. Commun., 7, 10524, https://doi.org/10.1038/ncomms10524,
2016. a, b, c
Bassis, J. N. and Ma, Y.: Evolution of basal crevasses links ice shelf
stability to ocean forcing, Earth Planet. Sc. Lett., 409, 203–211,
https://doi.org/10.1016/j.epsl.2014.11.003, 2015. a
Bassis, J. N. and Walker, C. C.: Upper and lower limits on the stability of
calving glaciers from the yield strength envelope of ice, Proc. Roy. Soc. A,
468, 913–931, https://doi.org/10.1098/rspa.2011.0422, 2012. a
Blatter, H.: Velocity and stress fields in grounded glaciers – a simple
algorithm for including deviatoric stress gradients, J. Glaciol., 41,
333–344, 1995. a, b
Bueler, E.: Lectures at Karthaus: Numerical modelling of ice sheets and ice
shelves,
available at: https://www.projects.science.uu.nl/iceclimate/karthaus/archive/lecturenotes/2009/bueler/EdBueler.pdf (last access: 27 May 2018), 2009. a
Bueler, E. and Brown, J.: Shallow shelf approximation as a “sliding law” in
a
thermodynamically coupled ice sheet model, J. Geophys. Res., 114, F03008,
https://doi.org/10.1029/2008JF001179, 2009. a
Bueler, E. and van Pelt, W.: Mass-conserving subglacial hydrology in the
Parallel Ice Sheet Model version 0.6, Geosci. Model Dev., 8, 1613–1635,
https://doi.org/10.5194/gmd-8-1613-2015, 2015. a, b, c
Bueler, E., Lingle, C. S., Kallen-Brown, J. A., Covey, D. N., and Bowman,
L. N.: Exact solutions and verification of numerical models for isothermal
ice sheets, J. Glaciol., 51, 291–306, https://doi.org/10.3189/172756505781829449,
2005. a
Cai, C., Rignot, E., Menemenlis, D., and Nakayama, Y.: Observations and
modeling of ocean-induced melt beneath Petermann Glacier Ice Shelf in
northwestern Greenland, Geophys. Res. Lett., 44, 8396–8403,
https://doi.org/10.1002/2017GL073711, 2017. a
Choi, Y., Morlighem, M., Rignot, E., Mouginot, J., and Wood, M.: Modeling the
response of Nioghalvjerdsjorden and Zachariae Isstrom Glaciers, Greenland, to
ocean forcing over the next century, Geophys. Res. Lett., 44, 11071–11079,
https://doi.org/10.1002/2017GL075174, 2017. a
Chronopoulos, A. T.: A class of parallel iterative methods implemented on
multiprocessors, PhD thesis, Department of Computer Science, University of
Illinois, 1986. a
Chronopoulos, A. T. and Gear, C. W.: s-step iterative methods for
symmetric linear systems, J. Comput. Appl. Math., 25, 153–168, 1989. a
Church, J., Clark, P., Cazenave, A., Gregory, J., Jevrejeva, S., Levermann,
A.,
Merrifield, M., Milne, G., Nerem, R., Nunn, P., Payne, A., Pfeffer, W.,
Stammer, D., and Unnikrishnan, A.: Sea Level Change, in: Climate Change 2013:
The Physical Science Basis. Contribution of Working Group I to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change, edited
by:
Stocker, T., Qin, D., Plattner, G.-K., Tignor, M., Allen, S., Boschung, J.,
Nauels, A., Xia, Y., Bex, V., and Midgley, P., Cambridge
University Press, Cambridge, United Kingdom and New York, NY, USA, 1137–1216,
https://doi.org/10.1017/CBO9781107415324.026, 2013. a
Cornford, S. L., Martin, D. F., Graves, D. T., Ranken, D. R., Le Brocq,
A. M.,
Gladstone, R. M., Payne, A. J., Ng, E. G., and Lipscomb, W. H.: Adaptive
mesh, finite volume modeling of marine ice sheets, J. Comput. Phys., 232,
529–549, 2013. a
Cuffey, K. and Paterson, W. S. B.: The Physics of Glaciers,
Butterworth-Heinneman, Amsterdam, 4th Edn., 2010. a
Dukowicz, J. K. and Baumgardner, J. R.: Incremental remapping as a
transport/advection algorithm, J. Comput. Phys., 160, 318–335, 2000. a
Dukowicz, J. K., Price, S. F., and Lipscomb, W. H.: Consistent
approximations
and boundary conditions for ice-sheet dynamics from a principle of least
action, J. Glaciol., 56, 480–496, 2010. a, b, c
Ettema, J., van den Broeke, M. R., van Meijgaard, E., van de Berg, W. J.,
Bamber, J. L., Box, J. E., and Bales, R. C.: Higher surface mass balance of
the Greenland ice sheet revealed by high-resolution climate modeling,
Geophys. Res. Lett., 36, L12501, https://doi.org/10.1029/2009GL038110, 2009. a
Evans, K. J., Salinger, A. G., Worley, P. H., Price, S. F., Lipscomb, W. H.,
Nichols, J. A., White III, J. B., Perego, M., Vertenstein, M., Edwards, J., and
Lemieux, J.-F.: A modern solver interface to manage solution algorithms in
the Community Earth System Model, Int. J. High Perform. C., 26,
54–62, https://doi.org/10.1177/1094342011435159, 2012. a
Fyke, J. G., Sacks, W. J., and Lipscomb, W. H.: A technique for generating
consistent ice sheet initial conditions for coupled ice sheet/climate models,
Geosci. Model Dev., 7, 1183–1195, https://doi.org/10.5194/gmd-7-1183-2014,
2014. a
Gagliardini, O., Zwinger, T., Gillet-Chaulet, F., Durand, G., Favier, L., de
Fleurian, B., Greve, R., Malinen, M., Martín, C., Råback, P.,
Ruokolainen, J., Sacchettini, M., Schäfer, M., Seddik, H., and Thies, J.:
Capabilities and performance of Elmer/Ice, a new-generation ice sheet model,
Geosci. Model Dev., 6, 1299–1318, https://doi.org/10.5194/gmd-6-1299-2013,
2013. a
Gladstone, R. M., Payne, A. J., and Cornford, S. L.: Parameterising the
grounding line in flow-line ice sheet models, The Cryosphere, 4, 605–619,
https://doi.org/10.5194/tc-4-605-2010, 2010. a
Glen, J. W.: The creep of polycrystalline ice, Proc. R. Soc. Lond. A, 228,
519–538, 1955. a
Goelzer, H., Nowicki, S., Edwards, T., Beckley, M., Abe-Ouchi, A.,
Aschwanden, A., Calov, R., Gagliardini, O., Gillet-Chaulet, F., Golledge, N.
R., Gregory, J., Greve, R., Humbert, A., Huybrechts, P., Kennedy, J. H.,
Larour, E., Lipscomb, W. H., Le clec'h, S., Lee, V., Morlighem, M., Pattyn,
F., Payne, A. J., Rodehacke, C., Rückamp, M., Saito, F., Schlegel, N.,
Seroussi, H., Shepherd, A., Sun, S., van de Wal, R., and Ziemen, F. A.:
Design and results of the ice sheet model initialisation experiments
initMIP-Greenland: an ISMIP6 intercomparison, The Cryosphere, 12, 1433–1460,
https://doi.org/10.5194/tc-12-1433-2018, 2018. a, b
Goldberg, D. N.: A variationally derived, depth-integrated approximation to
a higher-order glaciological flow model, J. Glaciol., 57, 157–170,
https://doi.org/10.3189/002214311795306763, 2011. a, b, c, d, e, f, g
Halfar, P.: On the dynamics of the ice sheets 2, J. Geophys. Res., 88,
6043–6051, 1983. a
Hanna, E., Navarro, F. J., Pattyn, F., Domingues, C. M., Fettweis, X., Ivins,
E. R., Nicholls, R. J., Ritz, C., Smith, B., Tulaczyk, S., Whitehouse, P. L.,
and Zwally, H. J.: Ice-sheet mass balance and climate change, Nature, 498,
51–59, https://doi.org/10.1038/nature12238, 2013. a
Heroux, M. A., Bartlett, R. A., Howle, V. E., Hoekstra, R. J., Hu, J. J.,
Kolda, T. G., Lehoucq, R. B., Long, K. R., Pawlowski, R. P., Phipps, E. T.,
Salinger, A. G., Thornquist, H. K., Tuminaro, R. S., Willenbring, J. M.,
Williams, A., and Stanley, K. S.: An overview of the Trilinos project, ACM
T. Math. Software, 31, 397–423,
https://doi.org/10.1145/1089014.1089021, 2005. a, b
Hindmarsh, R.: The role of membrane-like stresses in determining the
stability
and sensitivity of the Antarctic ice sheets: back pressure and grounding line
motion, Philos. T. R. Soc. A, 364, 1733–1767,
https://doi.org/10.1098/rsta.2006.1797, 2006. a
Hoffman, M. J. and Price, S.: Feedbacks between coupled subglacial hydrology
and glacier dynamics, J. Geophys. Res.-Earth, 119, 414–436,
https://doi.org/10.1002/2013JF002943, 2014. a
Hoffman, M. J., Perego, M., Price, S. F., Lipscomb, W. H., Zhang, T.,
Jacobsen, D., Tezaur, I., Salinger, A. G., Tuminaro, R., and Bertagna, L.:
MPAS-Albany Land Ice (MALI): a variable-resolution ice sheet model for Earth
system modeling using Voronoi grids, Geosci. Model Dev., 11, 3747–3780,
https://doi.org/10.5194/gmd-11-3747-2018, 2018. a
Hoffman, M. J., Price, S. F., and Lipscomb, W. H.: CISM/Community Ice Sheet,
Model, available at: https://cism.github.io/download.html, last access:
20 January 2019. a
Huebner, K. H., Dewhirst, D. L., Smith, D. E., and Byrom, T. G.: The Finite
Element Method for Engineers, Wiley, New York, 4th Edn., 2001. a
Hughes, T.: The Finite Element Method: Linear Static and Dynamic Finite
Element
Analysis, Dover Civil and Mechanical Engineering, Dover, Mineola, New York,
1st Edn., 2000. a
Hurrell, J., Holland, M., Gent, P., Ghan, S., Kay, J., Kushner, P., Lamarque,
J.-F., Large, W., Lawrence, D., Lindsay, K., Lipscomb, W., Long, M.,
Mahowald, N., Marsh, D., Neale, R., Rasch, P., Vavrus, S., Vertenstein, M.,
Bader, D., Collins, W., Hack, J., Kiehl, J., and Marshall, S.: The Community
Earth System Model: A framework for collaborative research, B. Am. Meteorol.
Soc., 94, 1339–1360, https://doi.org/10.1175/BAMS-D-12-00121.1, 2013. a
Hutter, K.: Theoretical Glaciology, Mathematical Approaches to Geophysics, D.
Reidel Publishing Company, Dordrecht, Boston, Lancaster, 1983. a
Joughin, I., Smith, B., Howat, I., and Scambos, T.: MEaSUREs Greenland Ice
Sheet Velocity Map from InSAR Data, National Snow and Ice Data Center,
Boulder, Colorado, 2010. a
Kennedy, J. H., Bennett, A. R., Evans, K. J., Price, S., Hoffman, M.,
Lipscomb,
W. H., Fyke, J., Vargo, L., Boghozian, A., Norman, M., and Worley, P. H.:
LIVVkit: An extensible, python-based, land ice verification and validation
tool kit for ice sheet models, J. Adv. Model. Earth Sy., 9, 854–869,
https://doi.org/10.1002/2017MS000916, 2017. a
Larour, E., Seroussi, H., Morlighem, M., and Rignot, E.: Continental scale,
high order, high spatial resolution, ice sheet modeling using the Ice Sheet
System Model (ISSM), J. Geophys. Res., 117, F01022,
https://doi.org/10.1029/2011JF002140, 2012. a
Leguy, G. R., Asay-Davis, X. S., and Lipscomb, W. H.: Parameterization of
basal friction near grounding lines in a one-dimensional ice sheet model, The
Cryosphere, 8, 1239–1259, https://doi.org/10.5194/tc-8-1239-2014, 2014. a, b
Levermann, A., Albrecht, T., Winkelmann, R., Martin, M. A., Haseloff, M., and
Joughin, I.: Kinematic first-order calving law implies potential for abrupt
ice-shelf retreat, The Cryosphere, 6, 273–286,
https://doi.org/10.5194/tc-6-273-2012, 2012. a, b, c
Lipscomb, W. H. and Hunke, E. C.: Modeling sea ice transport using
incremental remapping, Mon. Weather Rev., 132, 1341–1354, 2004. a, b
Lipscomb, W. H., Fyke, J. G., Vizcaino, M., Sacks, W. J., Wolfe, J.,
Vertenstein, M., Craig, A., Kluzek, E., and Lawrence, D. M.: Implementation
and initial evaluation of the Glimmer Community Ice Sheet Model in the
Community Earth System Model, J. Climate, 26, 7352–7371,
https://doi.org/10.1175/JCLI-D-12-00557.1, 2013. a
MacAyeal, D. R.: Large-scale ice flow over a viscous basal sediment –
Theory
and application to Ice Stream B, Antarctica, J. Geophys. Res., 94,
4071–4087, 1989. a
MacAyeal, D. R., Rommelaere, V., Huybrechts, P., Hulbe, C. L., Determann, J.,
and Ritz, C.: An ice-shelf model test based on the Ross Ice Shelf,
Antarctica, Ann. Glaciol., 23, 46–51, 1996. a, b, c, d, e, f, g, h
MacGregor, J. A., Fahnestock, M. A., Catania, G. A., Aschwanden, A., Clow,
G. D., Colgan, W. T., Gogineni, S. P., Morlighem, M., Nowicki, S. M. J.,
Paden, J. D., Price, S. F., and Seroussi, H.: A synthesis of the basal
thermal state of the Greenland Ice Sheet, J. Geophys. Res.-Earth, 121, 1328–1350,
https://doi.org/10.1002/2015JF003803, 2015. a, b
Morlighem, M., Rignot, E., Seroussi, H., Larour, E., Dhia, H. B., and Aubry,
D.: A mass conservation approach for mapping glacier ice thickness, Geophys.
Res. Lett., 38, L19503, https://doi.org/10.1029/2011GL048659, 2011. a
Morlighem, M., Rignot, E., Mouginot, J., Seroussi, H., and Larour, E.: Deeply
incised submarine glacial valleys beneath the Greenland Ice Sheet, Nat.
Geosci., 7, 418–422, https://doi.org/10.1038/ngeo2167, 2014. a, b, c, d
Morlighem, M., Bondzio, J., Seroussi, H., Rignot, E., Larour, E., Humbert,
A.,
and Rebuffi, S.: Modeling of Store Gletscher's calving dynamics, West
Greenland, in response to ocean thermal forcing, Geophys. Res. Lett., 43,
2659–2666,
https://doi.org/10.1002/2016GL067695, 2016. a
NCAR Command Language (Version 6.4.0)
[Software], Boulder, Colorado, UCAR/NCAR/CISL/VETS,
https://doi.org/10.5065/D6WD3XH5, 2017. a
Noël, B., van de Berg, W. J., Machguth, H., Lhermitte, S., Howat, I.,
Fettweis, X., and van den Broeke, M. R.: A daily, 1 km resolution data set
of downscaled Greenland ice sheet surface mass balance (1958–2015), The
Cryosphere, 10, 2361–2377, https://doi.org/10.5194/tc-10-2361-2016, 2016. a, b
Noël, B., van de Berg, W. J., van Wessem, J. M., van Meijgaard, E., van As,
D., Lenaerts, J. T. M., Lhermitte, S., Kuipers Munneke, P., Smeets, C. J. P.
P., van Ulft, L. H., van de Wal, R. S. W., and van den Broeke, M. R.:
Modelling the climate and surface mass balance of polar ice sheets using
RACMO2 – Part 1: Greenland (1958–2016), The Cryosphere, 12, 811–831,
https://doi.org/10.5194/tc-12-811-2018, 2018. a
Paterson, W. and Budd, W. F.: Flow parameters for ice sheet modeling, Cold
Reg. Sci. Technol., 6, 175–177, 1982. a
Pattyn, F.: A new three-dimensional higher-order thermomechanical ice-sheet
model: basic sensitivity, ice-stream development and ice flow across
subglacial lakes, J. Geophys. Res., 108, 2382, https://doi.org/10.1029/2002JB002329,
2003. a, b
Pattyn, F., Perichon, L., Aschwanden, A., Breuer, B., de Smedt, B.,
Gagliardini, O., Gudmundsson, G. H., Hindmarsh, R. C. A., Hubbard, A.,
Johnson, J. V., Kleiner, T., Konovalov, Y., Martin, C., Payne, A. J.,
Pollard, D., Price, S., Rückamp, M., Saito, F., Soucek, O., Sugiyama, S.,
and Zwinger, T.: Benchmark experiments for higher-order and full-Stokes ice
sheet models (ISMIP-HOM), The Cryosphere, 2, 95–108,
https://doi.org/10.5194/tc-2-95-2008, 2008. a, b, c, d, e, f, g, h, i
Pattyn, F., Schoof, C., Perichon, L., Hindmarsh, R. C. A., Bueler, E., de
Fleurian, B., Durand, G., Gagliardini, O., Gladstone, R., Goldberg, D.,
Gudmundsson, G. H., Huybrechts, P., Lee, V., Nick, F. M., Payne, A. J.,
Pollard, D., Rybak, O., Saito, F., and Vieli, A.: Results of the Marine Ice
Sheet Model Intercomparison Project, MISMIP, The Cryosphere, 6, 573–588,
https://doi.org/10.5194/tc-6-573-2012, 2012. a
Payne, A. J. and Dongelmans, P. W.: Self–organisation in the
thermomechanical
flow of ice sheets, J. Geophys. Res., 102, 12219–12233, 1997. a
Perego, M., Gunzburger, M., and Burkardt, J.: Parallel finite-element
implementation for higher-order ice sheet models, J. Glaciol., 58, 76–88,
https://doi.org/10.3189/2012JoG11J063, 2012. a, b, c, d
Perego, M., Price, S., and Stadler, G.: Optimal initial conditions for
coupling ice sheet models to Earth system models, J. Geophys. Res., 119,
1894–1917, https://doi.org/10.1002/2014jf003181, 2014. a
Pimentel, S., Flowers, G. E., and Schoof, C. G.: A hydrologically coupled
higher-order flow-band model of ice dynamics with a Coulomb friction sliding
law, J. Geophys. Res., 115, 1–16, https://doi.org/10.1029/2009JF001621, 2010. a
Pollard, D. and DeConto, R. M.: Description of a hybrid ice sheet-shelf
model, and application to Antarctica, Geosci. Model Dev., 5, 1273–1295,
https://doi.org/10.5194/gmd-5-1273-2012, 2012. a
Pollard, D., DeConto, R. M., and Alley, R. B.: Potential Antarctic Ice Sheet
retreat driving by hydrofracturing and ice cliff failure, Earth Planet. Sc.
Lett., 412, 112–121, https://doi.org/10.1016/j.epsl.2014.12.035, 2015. a
Price, S., Lipscomb, W., Hoffman, M., Hagdorn, M., Rutt, I., Payne, T.,
Hebeler, F., and Kennedy, J. H.: CISM 2.0.5 Documentation, Tech. rep., Los
Alamos National Laboratory, available at:
https://cism.github.io/data/cism_documentation_v2_0.pdf (last
access: 3 December 2018), 2015. a
Raymond, C. F.: Energy balance of ice streams, J. Glaciol., 46, 665–674,
2000. a
Rommelaere, V.: Ice Shelf Models Intercomparison: Setup of the experiments,
available at:
http://homepages.vub.ac.be/~phuybrec/eismint/shelf-descr.pdf (last
access: 13 May 2016), 1996. a, b
Rutt, I., Hagdorn, M., Hulton, N., and Payne, A.: The Glimmer community ice
sheet model, J. Geophys. Res., 114, F02004, https://doi.org/10.1029/2008JF001015,
2009. a, b, c, d
Sacks, W. J. and Lipscomb, W. H.: Community Ice Sheet Model, available at:
https://github.com/escomp/cism, last access: 20 January 2019. a
Schoof, C.: The effect of cavitation on glacier sliding, P. Roy. Soc. A,
461, 609–627, https://doi.org/10.1098/rspa.2004.1350, 2005. a
Schoof, C.: A variational approach to ice stream flow, J. Fluid Mech., 556,
227–251, 2006. a
Schoof, C. and Hindmarsh, R. C. A.: Thin-film flows with wall slip: an
asymptotic analysis of higher order glacier flow models, Q. J. Mech. Appl.
Math., 63, 73–114, 2010. a, b, c
Sergienko, O. V., Creyts, T. T., and Hindmarsh, R. C. A.: Similarity of
organized patterns in driving and basal stresses of Antarctic and Greenland
ice sheets beneath extensive areas of basal sliding, Geophys. Res. Lett.,
41, 3925–3932,
https://doi.org/10.1002/2014GL059976, 2014. a, b
Shapiro, N. and Ritzwoller, M.: Inferring surface heat flux distributions
guided by a global seismic model: particular application to Antarctica, Earth
Planet. Sci. Lett., 223, 213–224, https://doi.org/10.1016/j.epsl.2004.04.011, 2004. a
Shepherd, A., Ivins, E., A, G., Barletta, V., Bentley, M., Bettadpur, S.,
Briggs, K., Bromwich, D., Forsberg, R., Galin, N., Horwath, M., Jacobs, S.,
Joughin, I., King, M., Lenaerts, J., Li, J., Ligtenberg, S., Luckman, A.,
Luthcke, S., McMillan, M., Meister, R., Milne, G., Mouginot, J., Muir, A.,
Nicolas, J., Paden, J., Payne, A., Pritchard, H., Rignot, E., Rott, H.,
Sørensen, L., Scambos, T., Scheuchl, B., Schrama, E., Smith, B., Sundal, A.,
van Angelen, J., van de Berg, W., van den Broeke, M., Vaughan, D.,
Velicogna, I., Wahr, J., Whitehouse, P., Wingham, D., Yi, D., Young, D., and
Zwally, H.: A reconciled estimate of ice-sheet mass balance, Science, 338,
1183–1189, https://doi.org/10.1126/science.1228102, 2012.
a
Shepherd, A., Ivins, E., Rignot, E., Smith, B., van den Broeke, M.,
Velicogna,
I., Whitehouse, P., Briggs, K., Joughin, I., Krinner, G., Nowicki, S., Payne,
T., Scambos, T., Schlegel, N., Geruo, A., Agosta, C., Ahlström, A., Babonis,
G., Barletta, V., Blazquez, A., Bonin, J., Csatho, B., Cullather, R.,
Felikson, D., Fettweis, X., Forsberg, R., Gallee, H., Gardner, A., Gilbert,
L., Groh, A., Gunter, B., Hanna, E., Harig, C., Helm, V., Horvath, A.,
Horwath, M., Khan, S., Kjeldsen, K., Konrad, H., Langen, P., Lecavalier, B.,
Loomis, B., Luthcke, S., McMillan, M., Melini, D., Mernild, S., Mohajerani,
Y., Moore, P., Mouginot, J., Moyano, G., Muir, A., Nagler, T., Nield, G.,
Nilsson, J., Noel, B., Otosaka, I., Pattle, M., Peltier, W., Nadege, P.,
Rietbroek, R., Rott, H., Sandberg-Sørensen, L., Sasgen, I., Save, H.,
Schrama, E., Schröder, L., Seo, K.-W., Simonsen, S., Slater, T., Spada, G.,
Sutterley, T., Talpe, M., Tarasov, L., van de Berg, W., van der Wal, W., van
Wessem, M., Vishwakarma, B., Wiese, D., and Wouters, B.: Mass balance of the
Antarctic ice sheet from 1992 to 2017, Nature, 558, 219–222,
https://doi.org/10.1038/s41586-018-0179-y, 2017. a
Shewchuk, J. R.: An Introduction to the Conjugate Gradient Method Without the
Agonizing Pain, Tech. rep., Carnegie Mellon University, Pittsburgh, PA, USA,
1994. a, b
Tezaur, I. K., Perego, M., Salinger, A. G., Tuminaro, R. S., and Price, S.
F.: Albany/FELIX: a parallel, scalable and robust, finite element,
first-order Stokes approximation ice sheet solver built for advanced
analysis, Geosci. Model Dev., 8, 1197–1220,
https://doi.org/10.5194/gmd-8-1197-2015, 2015. a, b, c
Van den Berg, J., Van de Wal, R., and Oerlemans, J.: Effects of spatial
discretization in ice-sheet modelling using the shallow-ice approximation, J.
Glaciol., 52, 89–98, https://doi.org/10.3189/172756506781828935, 2006. a
Vizcaino, M.: Ice sheets as interactive components of Earth System Models:
progress and challenges, WIREs Clim. Change, 5, 557–568,
https://doi.org/10.1002/wcc.285, 2014. a, b
Weertman, J.: On the sliding of glaciers, J. Glaciol., 3, 33–38, 1957. a
Winkelmann, R., Martin, M. A., Haseloff, M., Albrecht, T., Bueler, E.,
Khroulev, C., and Levermann, A.: The Potsdam Parallel Ice Sheet Model
(PISM-PIK) – Part 1: Model description, The Cryosphere, 5, 715–726,
https://doi.org/10.5194/tc-5-715-2011, 2011. a