Baker, A. H., Hammerling, D. M., Mickelson, S. A., Xu, H., Stolpe, M. B., Naveau, P., Sanderson, B., Ebert-Uphoff, I., Samarasinghe, S., De Simone, F., Carbone, F., Gencarelli, C. N., Dennis, J. M., Kay, J. E., and Lindstrom, P.: Evaluating lossy data compression on climate simulation data within a large ensemble, Geosci. Model Dev., 9, 4381–4403, https://doi.org/10.5194/gmd-9-4381-2016, 2016.

Caron, J.: Compression by Scaling and Offset, available at:
http://www.unidata.ucar.edu/blogs/developer/en/entry/compression_by_scaling_and_offfset (last access: 27 September 2018), 2014a.

Caron, J.: Compression by bit shaving, available at:
http://www.unidata.ucar.edu/blogs/developer/entry/compression_by_bit_shaving (last access: 27 September 2018), 2014b.

Collet, Y.: LZ4 lossless compression algorithm, available at: http://lz4.org (last access: 27 September 2018), 2013.

Collet, Y. and Turner, C.: Smaller and faster data compression with
Zstandard, available at:
https://code.fb.com/core-data/smaller-and-faster-data-compression-with-zstandard/
(last access: 27 September 2018), 2016.

Deutsch, L. P.: DEFLATE compressed data format specification version 1.3,
Tech. Rep. IETF RFC1951, Internet Engineering Task Force, Menlo Park, CA,
USA, https://doi.org/10.17487/RFC1951, 1996.

Duda, J.: Asymmetric numeral systems: entropy coding combining speed of
Huffman coding with compression rate of arithmetic coding, arXiv:1311.2540v2
[cs.IT], 2013.

Huffman, D. A.: A method for the construction of minimum redundancy codes,
Proceedings of the IRE, 40, 1098–1101, https://doi.org/10.1109/JRPROC.1952.273898,
1952.

Lindstrom, P.: Fixed-Rate Compressed Floating-Point Arrays,
IEEE T. Vis. Comput. Gr., 20, 2674–2683, https://doi.org/10.1109/TVCG.2014.2346458, 2014.

Lindstrom, P. and Isenburg, M.: Fast and Efficient Compression of
Floating-Point Data, IEEE T. Vis. Comput. Gr., 12, 1245–1250, https://doi.org/10.1109/TVCG.2006.143, 2006.

Masui, K., Amiri, M., Connor, L., Deng, M., Fandino, M., Höfer, C.,
Halpern, M., Hanna, D., Hincks, A. D., Hinshaw, G., Parra, J. M., Newburgh,
L. B., Shaw, J. R., and Vanderlinde, K.: A compression scheme for radio data
in high performance computing, Astron. Comput., 12,
181–190, https://doi.org/10.1016/j.ascom.2015.07.002, 2015.

Silver, J. D. and Zender, C. S.: The compression-error trade-off for large gridded data sets, Geosci. Model Dev., 10, 413–423, https://doi.org/10.5194/gmd-10-413-2017, 2017.

Tao, D., Di, S., Chen, Z., and Cappello, F.: Significantly Improving Lossy
Compression for Scientific Data Sets Based on Multidimensional Prediction
and Error-Controlled Quantization, 2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS), Orlando, FL, USA, 29 May–2 June 2017, 1129–1139,
https://doi.org/10.1109/IPDPS.2017.115, 2017.

Tao, D., Di, S., Guo, H., Chen, Z., and Cappello F.: Z-checker: A Framework
for Assessing Lossy Compression of Scientific Data, Int. J. High Perform. C.,
33, 285–303, https://doi.org/10.1177/1094342017737147, 2019.

Zender, C. S.: Bit Grooming: statistically accurate precision-preserving quantization with compression, evaluated in the netCDF Operators (NCO, v4.4.8+), Geosci. Model Dev., 9, 3199–3211, https://doi.org/10.5194/gmd-9-3199-2016,
2016a.

Zender, C. S.: netCDF Operators (NCO), version 4.6.1, Zenodo,
https://doi.org/10.5281/zenodo.61341, 2016b.

Ziv, J. and Lempel, A.: A universal algorithm for sequential data
compression, IEEE T. Inform. Theory, 23, 337–343, https://doi.org/10.1109/TIT.1977.1055714, 1977.