Articles | Volume 12, issue 9
https://doi.org/10.5194/gmd-12-4165-2019
https://doi.org/10.5194/gmd-12-4165-2019
Model description paper
 | 
25 Sep 2019
Model description paper |  | 25 Sep 2019

eSCAPE: Regional to Global Scale Landscape Evolution Model v2.0

Tristan Salles

Related authors

Flexural isostatic response of continental-scale deltas to climatically driven sea level changes
Sara Polanco, Mike Blum, Tristan Salles, Bruce C. Frederick, Rebecca Farrington, Xuesong Ding, Ben Mather, Claire Mallard, and Louis Moresi
Earth Surf. Dynam., 12, 301–320, https://doi.org/10.5194/esurf-12-301-2024,https://doi.org/10.5194/esurf-12-301-2024, 2024
Short summary
River incision, 10Be production and transport in a source-to-sink sediment system (Var catchment, SW Alps)
Carole Petit, Tristan Salles, Vincent Godard, Yann Rolland, and Laurence Audin
Earth Surf. Dynam., 11, 183–201, https://doi.org/10.5194/esurf-11-183-2023,https://doi.org/10.5194/esurf-11-183-2023, 2023
Short summary
Landscape responses to dynamic topography and climate change on the South African source-to-sink system since the Oligocene
Claire A. Mallard and Tristan Salles
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2021-89,https://doi.org/10.5194/esurf-2021-89, 2021
Preprint withdrawn
Short summary
Tectonically and climatically driven mountain-hopping erosion in central Guatemala from detrital 10Be and river profile analysis
Gilles Brocard, Jane Kathrin Willenbring, Tristan Salles, Michael Cosca, Axel Guttiérez-Orrego, Noé Cacao Chiquín, Sergio Morán-Ical, and Christian Teyssier
Earth Surf. Dynam., 9, 795–822, https://doi.org/10.5194/esurf-9-795-2021,https://doi.org/10.5194/esurf-9-795-2021, 2021
Short summary
Mapping landscape connectivity as a driver of species richness under tectonic and climatic forcing
Tristan Salles, Patrice Rey, and Enrico Bertuzzo
Earth Surf. Dynam., 7, 895–910, https://doi.org/10.5194/esurf-7-895-2019,https://doi.org/10.5194/esurf-7-895-2019, 2019
Short summary

Related subject area

Climate and Earth system modeling
The prototype NOAA Aerosol Reanalysis version 1.0: description of the modeling system and its evaluation
Shih-Wei Wei, Mariusz Pagowski, Arlindo da Silva, Cheng-Hsuan Lu, and Bo Huang
Geosci. Model Dev., 17, 795–813, https://doi.org/10.5194/gmd-17-795-2024,https://doi.org/10.5194/gmd-17-795-2024, 2024
Short summary
Performance and process-based evaluation of the BARPA-R Australasian regional climate model version 1
Emma Howard, Chun-Hsu Su, Christian Stassen, Rajashree Naha, Harvey Ye, Acacia Pepler, Samuel S. Bell, Andrew J. Dowdy, Simon O. Tucker, and Charmaine Franklin
Geosci. Model Dev., 17, 731–757, https://doi.org/10.5194/gmd-17-731-2024,https://doi.org/10.5194/gmd-17-731-2024, 2024
Short summary
Monsoon Mission Coupled Forecast System version 2.0: model description and Indian monsoon simulations
Deepeshkumar Jain, Suryachandra A. Rao, Ramu A. Dandi, Prasanth A. Pillai, Ankur Srivastava, Maheswar Pradhan, and Kiran V. Gangadharan
Geosci. Model Dev., 17, 709–729, https://doi.org/10.5194/gmd-17-709-2024,https://doi.org/10.5194/gmd-17-709-2024, 2024
Short summary
Exploring the ocean mesoscale at reduced computational cost with FESOM 2.5: efficient modeling strategies applied to the Southern Ocean
Nathan Beech, Thomas Rackow, Tido Semmler, and Thomas Jung
Geosci. Model Dev., 17, 529–543, https://doi.org/10.5194/gmd-17-529-2024,https://doi.org/10.5194/gmd-17-529-2024, 2024
Short summary
Truly conserving with conservative remapping methods
Karl E. Taylor
Geosci. Model Dev., 17, 415–430, https://doi.org/10.5194/gmd-17-415-2024,https://doi.org/10.5194/gmd-17-415-2024, 2024
Short summary

Cited articles

Ahrens, J., Jourdain, S., O'Leary, P., Patchett, J., Rogers, D. H., and Petersen, M.: An image-based approach to extreme scale in situ visualization and analysis, Proceedings of the International Conference for High Performance Computing, https://doi.org/10.1109/SC.2014.40, 2014. a
Amante, C. and Eakins, B. W.: ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis., NOAA Technical Memorandum NESDIS NGDC-24, 19 pp., available at: http://www.ngdc.noaa.gov/mgg/global/global.html (last access: 23 September 2019), 2009. a
Armitage, J. J.: Short communication: flow as distributed lines within the landscape, Earth Surf. Dynam., 7, 67–75, https://doi.org/10.5194/esurf-7-67-2019, 2019. a, b, c, d
Balay, S., Brown, J., Buschelman, K., Gropp, W. D., Kaushik, D., Knepley, M. G., McInnes, L. C., Smith, B. F., and Zhang, H.: Argonne National Laboratory, PETSc, available at: http://www.mcs.anl.gov/petsc (last access: 23 September 2019), 2012. a, b, c
Barnes, R.: Parallel non-divergent flow accumulation for trillion cell digital elevation models on desktops or clusters, Environ. Model. Softw., 92, 202–212, https://doi.org/10.1016/j.envsoft.2017.02.022, 2017. a, b
Download
Short summary
This paper presents a new numerical model able to simulate for the first time the evolution of Earth's surface at a global scale under different precipitation, sea level, and tectonic conditions. This is significant as it can help to bridge the gap between local- and global-scale predictions of Earth's past and future variations.