Annan, J. D., Hargreaves, J. C., Edwards, N. R., and Marsh, R.: Parameter
estimation in an intermediate complexity earth system model using an
ensemble Kalman filter, Ocean. Model., 8, 135–154, https://doi.org/10.1016/j.ocemod.2003.12.004, 2005.

Asadzadeh, M., Razavi, S., Tolson, B. A., and Fay, D.: Pre-emption
strategies for efficient multi-objective optimization: Application to the
development of Lake Superior regulation plan, Environ. Modell. Softw., 54,
128–141, https://doi.org/10.1016/j.envsoft.2014.01.005, 2014.

Beretta, L. and Santaniello, A.: Nearest neighbor imputation algorithms: a
critical evaluation, BMC Med. Inform. Decis., 16, 74, https://doi.org/10.1186/s12911-016-0318-z, 2016.

Burnash, R. J. C.: The NWS River forecast system-catchment modeling, in:
Computer Models of Watershed Hydrology, edited by: Singh, V. P., Water
Resources Publication, Highlands Ranch, Colorado, USA, 311–366, 1995.

Choudhury, B. J. and Idso, S. B.: An empirical model for stomatal
resistance of field-grown wheat, Agr. Forest. Meteorol., 36, 65–82,
https://doi.org/10.1016/0168-1923(85)90066-8, 1985.

Camm, J. D., Raturi, A. S., and Tsubakitani, S.: Cutting big M down to size,
Interfaces, 20, 61–66, https://doi.org/10.1287/inte.20.5.61,1990.

Clark, M. P. and Kavetski, D.: Ancient numerical daemons of conceptual
hydrological modeling: 1. Fidelity and efficiency of time stepping schemes,
Water. Resour. Res., 46, W10510, https://doi.org/10.1029/2009WR008894, 2010.

Crombecq, K., Laermans, E., and Dhaene, T.: Efficient space-filling and
non-collapsing sequential design strategies for simulation-based modelling,
Eur. J. Oper. Res., 214, 683–696, https://doi.org/10.1016/j.ejor.2011.05.032, 2011.

Edwards, N. R. and Marsh, R.: Uncertainties due to transport-parameter
sensitivity in an efficient 3-D ocean-climate model, Clim. Dynam., 24,
415–433, https://doi.org/10.1007/s00382-004-0508-8, 2005.

Edwards, N. R., Cameron, D., and Rougier, J.: Precalibrating an intermediate
complexity climate model, Clim. Dynam., 37, 1469–1482, https://doi.org/10.1007/s00382-010-0921-0, 2011.

Estrada, E.: Quasirandom geometric networks from low-discrepancy sequences,
Phys. Rev. E., 96, 022314, https://doi.org/10.1103/PhysRevE.96.022314, 2017.

Fisher, M. J., Charles-Edwards, D. A., and Ludlow, M. M.: An analysis of the
effects of repeated short-term soil water deficits on stomatal conductance
to carbon dioxide and leaf photosynthesis by the legume Macroptilium
atropurpureum cv. Siratro, Funct. Plant. Biol., 8, 347–357, https://doi.org/10.1071/PP9810347, 1981.

Forrester, A. I. and Keane, A. J.: Recent advances in surrogate-based
optimization, Prog. Aerosp. Sci., 45, 50–79, https://doi.org/10.1016/j.paerosci.2008.11.001, 2009.

Gupta, H. V. and Razavi, S.: Revisiting the basis of sensitivity analysis
for dynamical Earth system models, Water. Resour. Res., 54, 8692–8717,
https://doi.org/10.1029/2018WR022668, 2018.

Haghnegahdar, A. and Razavi, S.: Insights into sensitivity analysis of
earth and environmental systems models: On the impact of parameter
perturbation scale, Environ. Modell. Softw., 95, 115–131, https://doi.org/10.1016/j.envsoft.2017.03.031, 2017.

Haghnegahdar, A., Tolson, B. A., Craig, J. R., and Paya, K. T.: Assessing the
performance of a semi-distributed hydrological model under various watershed
discretization schemes, Hydrol. Process., 29, 4018–4031, https://doi.org/10.1002/hyp.10550, 2015.

Haghnegahdar, A., Razavi, S., Yassin, F., and Wheater, H., Multicriteria
sensitivity analysis as a diagnostic tool for understanding model behaviour
and characterizing model uncertainty, Hydrol. Process., 31, 4462–4476,
https://doi.org/10.1002/hyp.11358, 2017.

Herrera, L. J., Pomares, H., Rojas, I., Guillén, A., Rubio, G., and
Urquiza, J.: Global and local modelling in RBF networks, Neurocomputing,
74, 2594–2602, https://doi.org/10.1016/j.neucom.2011.03.027, 2011.

Hudak, A. T., Crookston, N. L., Evans, J. S., Hall, D. E., and Falkowski, M. J.:
Nearest neighbor imputation of species-level, plot-scale forest structure
attributes from LiDAR data, Remote. Sens. Environ., 112, 2232–2245,
https://doi.org/10.1016/j.rse.2007.10.009, 2008.

Jin, R., Chen, W., and Simpson, T. W.: Comparative studies of metamodelling
techniques under multiple modelling criteria, Struct. Multidiscip. O.,
23, 1–13, https://doi.org/10.1007/s00158-001-0160-4, 2001.

Jones, D. R.: A taxonomy of global optimization methods based on response
surfaces, J. Global Optim., 21, 345–383, https://doi.org/10.1023/A:1012771025575, 2001.

Kavetski, D. and Clark, M. P.: Ancient numerical daemons of conceptual
hydrological modeling: 2. Impact of time stepping schemes on model analysis
and prediction, Water. Resour. Res., 46, W10511, https://doi.org/10.1029/2009WR008896, 2010.

Kavetski, D., Kuczera, G., and Franks, S. W.: Calibration of conceptual
hydrological models revisited: 1. Overcoming numerical artefacts, J.
Hydrol., 320, 173–186, https://doi.org/10.1016/j.jhydrol.2005.07.012, 2006.

Kelleher, C., Wagener, T., McGlynn, B., Ward, A. S., Gooseff, M. N., and
Payn, R. A.: Identifiability of transient storage model parameters along a
mountain stream, Water. Resour. Res., 49, 5290–5306, https://doi.org/10.1002/wrcr.20413, 2013.

Kitayama, S. and Yamazaki, K.: Simple estimate of the width in Gaussian
kernel with adaptive scaling technique, Appl. Soft. Comp., 11,
4726–4737, https://doi.org/10.1016/j.asoc.2011.07.011, 2011.

Kouwen, N., Soulis, E. D., Pietroniro, A., Donald, J., and Harrington, R.
A.: Grouped response units for distributed hydrologic modelling, J. Water.
Res. Plan. Man., 119, 289–305, https://doi.org/10.1061/(ASCE)0733-9496(1993)119:3(289), 1993.

Krogh, S. A., Pomeroy, J. W., and Marsh, P.: Diagnosis of the hydrology of a
small Arctic basin at the tundra-taiga transition using a physically based
hydrological model, J. Hydrol., 550, 685–703, https://doi.org/10.1016/j.jhydrol.2017.05.042, 2017.

Lagarias, J. C., Reeds, J. A., Wright, M. H., and Wright, P. E., Convergence
properties of the Nelder–Mead simplex method in low dimensions, SIAM J.
Optimiz., 9, 112–147, https://doi.org/10.1137/S1052623496303470, 1998.

Leroux, N. R. and Pomeroy, J. W.: Simulation of capillary overshoot in snow
combining trapping of the wetting phase with a non-equilibrium Richards
equation model, Water. Resour. Res., 54, 236–248, https://doi.org/10.1029/2018WR022969, 2019.

Li, S., Rupp, D. E., Hawkins, L., Mote, P. W., McNeall, D., Sparrow, S. N., Wallom, D. C. H., Betts, R. A., and Wettstein, J. J.: Reducing climate model biases by exploring parameter space with large ensembles of climate model simulations and statistical emulation, Geosci. Model Dev., 12, 3017–3043, https://doi.org/10.5194/gmd-12-3017-2019, 2019.

Lin, Y.: An Efficient Robust Concept Exploration Method and Sequential
Exploratory Experimental Design, PhD thesis,
Georgia Institute of Technology, USA, 2004.

Lindström, G., Johansson, B., Persson, M., Gardelin, M., and
Bergström, S.: Development and test of the distributed HBV-96
hydrological model, J. Hydrol., 201, 272–288, 1997.

Little, R. J. A. and Rubin, D. B.: Statistical Analysis with Missing Data,
John Wiley & Sons, New York, USA, 1987.

Liu, Y. and Gopalakrishnan, V.: An overview and evaluation of recent
machine learning imputation methods using cardiac imaging data, Data, 2,
8, https://doi.org/10.3390/data2010008, 2017.

Lucas, D. D., Klein, R., Tannahill, J., Ivanova, D., Brandon, S., Domyancic, D., and Zhang, Y.: Failure analysis of parameter-induced simulation crashes in climate models, Geosci. Model Dev., 6, 1157–1171, https://doi.org/10.5194/gmd-6-1157-2013, 2013.

McRoberts, R. E.: Diagnostic tools for nearest neighbors techniques when
used with satellite imagery, Remote. Sens. Environ., 113, 489–499,
https://doi.org/10.1016/j.rse.2008.06.015, 2009.

McRoberts, R. E., Nelson, M. D., and Wendt, D. G.: Stratified estimation of
forest area using satellite imagery, inventory data, and the *k*-Nearest
Neighbors technique, Remote. Sens. Environ., 82, 457–468, https://doi.org/10.1016/S0034-4257(02)00064-0, 2002.

Metzger, C., Nilsson, M. B., Peichl, M., and Jansson, P.-E.: Parameter interactions and sensitivity analysis for modelling carbon heat and water fluxes in a natural peatland, using CoupModel v5, Geosci. Model Dev., 9, 4313–4338, https://doi.org/10.5194/gmd-9-4313-2016, 2016.

Mullur, A. A. and Messac, A.: Metamodeling using extended radial basis
functions: a comparative approach, Eng. Comput., 21, 203–217, https://doi.org/10.1007/s00366-005-0005-7, 2006.

Nossent, J., Elsen, P., and Bauwens, W.: Sobol' sensitivity analysis of a complex environmental model, Environ. Model. Software., 26, 1515–1525, https://doi.org/10.1016/j.envsoft.2011.08.010, 2011.

Paja, W., Wrzesien, M., Niemiec, R., and Rudnicki, W. R.: Application of all-relevant feature selection for the failure analysis of parameter-induced simulation crashes in climate models, Geosci. Model Dev., 9, 1065–1072, https://doi.org/10.5194/gmd-9-1065-2016, 2016.

Pappenberger, F., Beven, K. J., Ratto, M., and Matgen, P.: Multi-method
global sensitivity analysis of flood inundation models, Adv. Water. Resour.,
31, 1–14, https://doi.org/10.1016/j.advwatres.2007.04.009,
2008.

Pietroniro, A., Fortin, V., Kouwen, N., Neal, C., Turcotte, R., Davison, B., Verseghy, D., Soulis, E. D., Caldwell, R., Evora, N., and Pellerin, P.: Development of the MESH modelling system for hydrological ensemble forecasting of the Laurentian Great Lakes at the regional scale, Hydrol. Earth Syst. Sci., 11, 1279–1294, https://doi.org/10.5194/hess-11-1279-2007, 2007.

Raj, R., van der Tol, C., Hamm, N. A. S., and Stein, A.: Bayesian integration of flux tower data into a process-based simulator for quantifying uncertainty in simulated output, Geosci. Model Dev., 11, 83–101, https://doi.org/10.5194/gmd-11-83-2018, 2018.

Razavi, S. and Gupta, H. V.: What do we mean by sensitivity analysis? The
need for comprehensive characterization of “global” sensitivity in Earth
and Environmental systems models, Water. Resour. Res., 51, 3070–3092.
https://doi.org/10.1002/2014WR016527, 2015.

Razavi, S. and Gupta, H. V.: A new framework for comprehensive, robust, and
efficient global sensitivity analysis: 1. Theory, Water. Resour. Res., 52,
423–439, https://doi.org/10.1002/2015WR017558, 2016a.

Razavi, S. and Gupta, H. V.: A new framework for comprehensive, robust, and
efficient global sensitivity analysis: 2. Application, Water. Resour. Res.,
52, 440–455, https://doi.org/10.1002/2015WR017559, 2016b.

Razavi, S. and Gupta, H. V.: A multi-method generalized global sensitivity
matrix approach to accounting for the dynamical nature of Earth and
environmental systems models, Environ. Modell. Softw., 114, 1–11, https://doi.org/10.1016/j.envsoft.2018.12.002, 2019.

Razavi, S., Tolson, B. A., Matott, L. S., Thomson, N. R., MacLean, A., and
Seglenieks, F. R.: Reducing the computational cost of automatic calibration
through model pre-emption, Water. Resour. Res., 46, W11523, https://doi.org/10.1029/2009WR008957, 2010.

Razavi, S., Tolson, B. A., and Burn, D. H.: Review of surrogate modeling in
water resources, Water. Resour. Res., 48, W07401, https://doi.org/10.1029/2011WR011527, 2012a.

Razavi, S., Tolson, B. A., and Burn, D. H.: Numerical assessment of
metamodelling strategies in computationally intensive optimization, Environ.
Modell. Softw., 34, 67–86, https://doi.org/10.1016/j.envsoft.2011.09.010, 2012b.

Razavi, S., Sheikholeslami, R., Gupta, H. V., and Haghnegahdar, A.:
VARS-TOOL: A toolbox for comprehensive, efficient, and robust sensitivity
and uncertainty analysis, Environ. Modell. Softw., 112, 95–107, https://doi.org/10.1016/j.envsoft.2018.10.005, 2019.

Safta, C., Ricciuto, D. M., Sargsyan, K., Debusschere, B., Najm, H. N., Williams, M., and Thornton, P. E.: Global sensitivity analysis, probabilistic calibration, and predictive assessment for the data assimilation linked ecosystem carbon model, Geosci. Model Dev., 8, 1899–1918, https://doi.org/10.5194/gmd-8-1899-2015, 2015.

Saltelli, A. and Annoni, P.: How to avoid a perfunctory sensitivity
analysis, Environ. Modell. Softw., 25, 1508–1517, https://doi.org/10.1016/j.envsoft.2010.04.012, 2010.

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., and Tarantola, S.: Global Sensitivity Analysis. The Primer, John Wiley & Sons, Chichester, West Sussex, UK, https://doi.org/10.1002/9780470725184, 2008.

Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., and
Tarantola, S.: Variance based sensitivity analysis of model output. Design
and estimator for the total sensitivity index, Comput. Phys. Commun.,
181, 259–270, https://doi.org/10.1016/j.cpc.2009.09.018,
2010.

Sarrazin, F., Pianosi, F., and Wagener, T.: Global sensitivity analysis of environmental models: convergence and validation, Environ. Model. Softw., 79, 135–152, https://doi.org/10.1016/j.envsoft.2016.02.005, 2016.

Sheikholeslami, R. and Razavi, S.: Progressive Latin Hypercube Sampling: An
efficient approach for robust sampling-based analysis of environmental
models, Environ. Modell. Softw., 93, 109–126, https://doi.org/10.1016/j.envsoft.2017.03.010, 2017.

Sheikholeslami, R., Yassin, F., Lindenschmidt, K. E., and Razavi, S.:
Improved understanding of river ice processes using global sensitivity
analysis approaches, J. Hydrol. Eng., 22, 04017048, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001574, 2017.

Sheikholeslami, R., Razavi, S., Gupta, H. V., Becker, W., and Haghnegahdar,
A.: Global sensitivity analysis for high-dimensional problems: how to
objectively group factors and measure robustness and convergence while
reducing computational cost, Environ. Modell. Softw., 111, 282–299,
https://doi.org/10.1016/j.envsoft.2018.09.002, 2019.

Singh, V. P. and Frevert, D. K.: Mathematical Models of Small Watershed
Hydrology and Applications, 950 pp., Water Resources Publication, Highlands
Ranch, Colorado, USA, 2002.

Tomppo, E., Nilsson, M., Rosengren, M., Aalto, P., and Kennedy, P.:
Simultaneous use of Landsat-TM and IRS-1C WiFS data in estimating large area
tree stem volume and aboveground biomass, Remote. Sens. Environ., 82,
156–171, https://doi.org/10.1016/S0034-4257(02)00031-7, 2002.

Treglown, C.: Predicting crashes in climate model simulations through artificial neural networks, 1st ANU Bio-inspired Computing conference (ABCs 2018), Canberra, Australia, 20 July 2018, Paper 172, 2018.

Tutz, G. and Ramzan, S.: Improved methods for the imputation of missing
data by nearest neighbor methods, Comput. Stat. Data. An., 90, 84–99,
https://doi.org/10.1016/j.csda.2015.04.009, 2015.

Vanrolleghem, P. A., Mannina, G., Cosenza, A., and Neumann, M. B.: Global
sensitivity analysis for urban water quality modelling: Terminology,
convergence and comparison of different methods, J. Hydrol., 522, 339–352,
https://doi.org/10.1016/j.jhydrol.2014.12.056, 2015.

Verseghy, D.: CLASS – the Canadian Land Surface Scheme (Version 3.6),
Technical Documentation, Science and Technology Branch, Environment and
Climate Change Canada, Toronto, Tech. Rep., 179 pp. 2012.

Verseghy, D. L.: CLASS – A Canadian land surface scheme for GCMs, I. Soil
model, Int. J. Climatol., 11, 111–133, https://doi.org/10.1002/joc.3370110202, 1991.

Verseghy, D. L., McFarlane, N. A., and Lazare, M.: CLASS – A Canadian land
surface scheme for GCMs, II. Vegetation model and coupled runs, Int. J.
Climatol., 13, 347–370, https://doi.org/10.1002/joc.3370130402, 1993.

Webster, M., Scott, J., Sokolov, A., and Stone, P.: Estimating probability
distributions from complex models with bifurcations: The case of ocean
circulation collapse, J. Environ. Syst., 31, 1–21, https://doi.org/10.2190/A518-W844-4193-4202, 2004.

Williamson, D.: Exploratory ensemble designs for environmental models using
*k*-extended Latin Hypercubes, Environmetrics, 26, 268–283, https://doi.org/10.1002/env.2335, 2015.

Williamson, D., Goldstein, M., Allison, L., Blaker, A., Challenor, P.,
Jackson, L., and Yamazaki, K.: History matching for exploring and reducing
climate model parameter space using observations and a large perturbed
physics ensemble, Clim. Dynam., 41, 1703–1729, https://doi.org/10.1007/s00382-013-1896-4, 2013.

Williamson, D. B., Blaker, A. T., and Sinha, B.: Tuning without over-tuning: parametric uncertainty quantification for the NEMO ocean model, Geosci. Model Dev., 10, 1789–1816, https://doi.org/10.5194/gmd-10-1789-2017, 2017.

Yassin, F., Razavi, S., Wheater, H., Sapriza-Azuri, G., Davison, B., and
Pietroniro, A.: Enhanced identification of a hydrologic model using
streamflow and satellite water storage data: a multi-criteria sensitivity
analysis and optimization approach, Hydrol. Process., 31, 3320–3333,
https://doi.org/10.1002/hyp.11267, 2017.

Zhao, D. and Xue, D.: A comparative study of metamodeling methods
considering sample quality merits, Struct. Multidiscip. O., 42, 923–938,
https://doi.org/10.1007/s00158-010-0529-3, 2010.