Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.154 IF 5.154
  • IF 5-year value: 5.697 IF 5-year
    5.697
  • CiteScore value: 5.56 CiteScore
    5.56
  • SNIP value: 1.761 SNIP 1.761
  • IPP value: 5.30 IPP 5.30
  • SJR value: 3.164 SJR 3.164
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 59 Scimago H
    index 59
  • h5-index value: 49 h5-index 49
GMD | Articles | Volume 12, issue 10
Geosci. Model Dev., 12, 4297–4307, 2019
https://doi.org/10.5194/gmd-12-4297-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Geosci. Model Dev., 12, 4297–4307, 2019
https://doi.org/10.5194/gmd-12-4297-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Development and technical paper 10 Oct 2019

Development and technical paper | 10 Oct 2019

Incorporation of inline warm rain diagnostics into the COSP2 satellite simulator for process-oriented model evaluation

Takuro Michibata et al.
Related authors  
The source of discrepancies in aerosol–cloud–precipitation interactions between GCM and A-Train retrievals
Takuro Michibata, Kentaroh Suzuki, Yousuke Sato, and Toshihiko Takemura
Atmos. Chem. Phys., 16, 15413–15424, https://doi.org/10.5194/acp-16-15413-2016,https://doi.org/10.5194/acp-16-15413-2016, 2016
Short summary
The effects of aerosols on water cloud microphysics and macrophysics based on satellite-retrieved data over East Asia and the North Pacific
T. Michibata, K. Kawamoto, and T. Takemura
Atmos. Chem. Phys., 14, 11935–11948, https://doi.org/10.5194/acp-14-11935-2014,https://doi.org/10.5194/acp-14-11935-2014, 2014
Short summary
Related subject area  
Atmospheric Sciences
Description and evaluation of the tropospheric aerosol scheme in the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS-AER, cycle 45R1)
Samuel Rémy, Zak Kipling, Johannes Flemming, Olivier Boucher, Pierre Nabat, Martine Michou, Alessio Bozzo, Melanie Ades, Vincent Huijnen, Angela Benedetti, Richard Engelen, Vincent-Henri Peuch, and Jean-Jacques Morcrette
Geosci. Model Dev., 12, 4627–4659, https://doi.org/10.5194/gmd-12-4627-2019,https://doi.org/10.5194/gmd-12-4627-2019, 2019
Short summary
Multimodel simulations of a springtime dust storm over northeastern China: implications of an evaluation of four commonly used air quality models (CMAQ v5.2.1, CAMx v6.50, CHIMERE v2017r4, and WRF-Chem v3.9.1)
Siqi Ma, Xuelei Zhang, Chao Gao, Daniel Q. Tong, Aijun Xiu, Guangjian Wu, Xinyuan Cao, Ling Huang, Hongmei Zhao, Shichun Zhang, Sergio Ibarra-Espinosa, Xin Wang, Xiaolan Li, and Mo Dan
Geosci. Model Dev., 12, 4603–4625, https://doi.org/10.5194/gmd-12-4603-2019,https://doi.org/10.5194/gmd-12-4603-2019, 2019
Short summary
tobac 1.2: towards a flexible framework for tracking and analysis of clouds in diverse datasets
Max Heikenfeld, Peter J. Marinescu, Matthew Christensen, Duncan Watson-Parris, Fabian Senf, Susan C. van den Heever, and Philip Stier
Geosci. Model Dev., 12, 4551–4570, https://doi.org/10.5194/gmd-12-4551-2019,https://doi.org/10.5194/gmd-12-4551-2019, 2019
Short summary
Simulating lightning NO production in CMAQv5.2: performance evaluations
Daiwen Kang, Kristen M. Foley, Rohit Mathur, Shawn J. Roselle, Kenneth E. Pickering, and Dale J. Allen
Geosci. Model Dev., 12, 4409–4424, https://doi.org/10.5194/gmd-12-4409-2019,https://doi.org/10.5194/gmd-12-4409-2019, 2019
Short summary
A Lagrangian convective transport scheme including a simulation of the time air parcels spend in updrafts (LaConTra v1.0)
Ingo Wohltmann, Ralph Lehmann, Georg A. Gottwald, Karsten Peters, Alain Protat, Valentin Louf, Christopher Williams, Wuhu Feng, and Markus Rex
Geosci. Model Dev., 12, 4387–4407, https://doi.org/10.5194/gmd-12-4387-2019,https://doi.org/10.5194/gmd-12-4387-2019, 2019
Short summary
Cited articles  
Bai, H., Gong, C., Wang, M., Zhang, Z., and L'Ecuyer, T.: Estimating precipitation susceptibility in warm marine clouds using multi-sensor aerosol and cloud products from A-Train satellites, Atmos. Chem. Phys., 18, 1763–1783, https://doi.org/10.5194/acp-18-1763-2018, 2018. a
Beheng, K. D.: A parameterization of warm cloud microphysical conversion processes, Atmos. Res., 33, 193–206, 1994. a
Berry, E. X.: Modification of the Warm Rain Process, in: Proc. First Conf. on Weather Modification, Albany, NY, Amer. Meteor. Soc, paper presented at 1st National Conf. on Weather Modification, 28 April–1 May, 81–85, 1968. a, b
Bodas-Salcedo, A., Webb, M. J., Bony, S., Chepfer, H., Dufresne, J.-L., Klein, S. A., Zhang, Y., Marchand, R., Haynes, J. M., Pincus, R., and John, V. O.: COSP: Satellite simulation software for model assessment, B. Am. Meteorol. Soc., 92, 1023–1043, https://doi.org/10.1175/2011BAMS2856.1, 2011. a, b
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S. K., Sherwood, S., Stevens, B., and Zhang, X. Y.: Clouds and aerosols, Cambridge University Press, Cambridge, UK, 571–657, https://doi.org/10.1017/CBO9781107415324.016, 2013. a
Publications Copernicus
Download
Short summary
A new diagnostic tool for cloud and precipitation microphysics has been added to the latest version of the Cloud Feedback Model Intercomparison Project Observational Simulator Package (COSP2). The tool generates warm rain process statistics from several instrument simulators online during the COSP execution. This online diagnostic is intended to serve as a tool that facilitates efficient model development and the evaluation of multiple climate models.
A new diagnostic tool for cloud and precipitation microphysics has been added to the latest...
Citation