Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.154 IF 5.154
  • IF 5-year value: 5.697 IF 5-year
    5.697
  • CiteScore value: 5.56 CiteScore
    5.56
  • SNIP value: 1.761 SNIP 1.761
  • IPP value: 5.30 IPP 5.30
  • SJR value: 3.164 SJR 3.164
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 59 Scimago H
    index 59
  • h5-index value: 49 h5-index 49
GMD | Articles | Volume 12, issue 10
Geosci. Model Dev., 12, 4309–4346, 2019
https://doi.org/10.5194/gmd-12-4309-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Geosci. Model Dev., 12, 4309–4346, 2019
https://doi.org/10.5194/gmd-12-4309-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Model description paper 14 Oct 2019

Model description paper | 14 Oct 2019

The biophysics, ecology, and biogeochemistry of functionally diverse, vertically and horizontally heterogeneous ecosystems: the Ecosystem Demography model, version 2.2 – Part 1: Model description

Marcos Longo et al.
Related authors  
The biophysics, ecology, and biogeochemistry of functionally diverse, vertically and horizontally heterogeneous ecosystems: the Ecosystem Demography model, version 2.2 – Part 2: Model evaluation for tropical South America
Marcos Longo, Ryan G. Knox, Naomi M. Levine, Abigail L. S. Swann, David M. Medvigy, Michael C. Dietze, Yeonjoo Kim, Ke Zhang, Damien Bonal, Benoit Burban, Plínio B. Camargo, Matthew N. Hayek, Scott R. Saleska, Rodrigo da Silva, Rafael L. Bras, Steven C. Wofsy, and Paul R. Moorcroft
Geosci. Model Dev., 12, 4347–4374, https://doi.org/10.5194/gmd-12-4347-2019,https://doi.org/10.5194/gmd-12-4347-2019, 2019
Short summary
Estimation of coarse dead wood stocks in intact and degraded forests in the Brazilian Amazon using airborne lidar
Marcos A. S. Scaranello, Michael Keller, Marcos Longo, Maiza N. dos-Santos, Veronika Leitold, Douglas C. Morton, Ekena R. Pinagé, and Fernando Del Bon Espírito-Santo
Biogeosciences, 16, 3457–3474, https://doi.org/10.5194/bg-16-3457-2019,https://doi.org/10.5194/bg-16-3457-2019, 2019
Short summary
Assessing impacts of selective logging on water, energy, and carbon budgets and ecosystem dynamics in Amazon forests using the Functionally Assembled Terrestrial Ecosystem Simulator
Maoyi Huang, Yi Xu, Marcos Longo, Michael Keller, Ryan Knox, Charles Koven, and Rosie Fisher
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-129,https://doi.org/10.5194/bg-2019-129, 2019
Revised manuscript has not been submitted
Short summary
Carbon exchange in an Amazon forest: from hours to years
Matthew N. Hayek, Marcos Longo, Jin Wu, Marielle N. Smith, Natalia Restrepo-Coupe, Raphael Tapajós, Rodrigo da Silva, David R. Fitzjarrald, Plinio B. Camargo, Lucy R. Hutyra, Luciana F. Alves, Bruce Daube, J. William Munger, Kenia T. Wiedemann, Scott R. Saleska, and Steven C. Wofsy
Biogeosciences, 15, 4833–4848, https://doi.org/10.5194/bg-15-4833-2018,https://doi.org/10.5194/bg-15-4833-2018, 2018
Short summary
The Brazilian developments on the Regional Atmospheric Modeling System (BRAMS 5.2): an integrated environmental model tuned for tropical areas
Saulo R. Freitas, Jairo Panetta, Karla M. Longo, Luiz F. Rodrigues, Demerval S. Moreira, Nilton E. Rosário, Pedro L. Silva Dias, Maria A. F. Silva Dias, Enio P. Souza, Edmilson D. Freitas, Marcos Longo, Ariane Frassoni, Alvaro L. Fazenda, Cláudio M. Santos e Silva, Cláudio A. B. Pavani, Denis Eiras, Daniela A. França, Daniel Massaru, Fernanda B. Silva, Fernando C. Santos, Gabriel Pereira, Gláuber Camponogara, Gonzalo A. Ferrada, Haroldo F. Campos Velho, Isilda Menezes, Julliana L. Freire, Marcelo F. Alonso, Madeleine S. Gácita, Maurício Zarzur, Rafael M. Fonseca, Rafael S. Lima, Ricardo A. Siqueira, Rodrigo Braz, Simone Tomita, Valter Oliveira, and Leila D. Martins
Geosci. Model Dev., 10, 189–222, https://doi.org/10.5194/gmd-10-189-2017,https://doi.org/10.5194/gmd-10-189-2017, 2017
Short summary
Related subject area  
Biogeosciences
GLOBAL-FATE (version 1.0.0): A geographical information system (GIS)-based model for assessing contaminants fate in the global river network
Carme Font, Francesco Bregoli, Vicenç Acuña, Sergi Sabater, and Rafael Marcé
Geosci. Model Dev., 12, 5213–5228, https://doi.org/10.5194/gmd-12-5213-2019,https://doi.org/10.5194/gmd-12-5213-2019, 2019
Short summary
A comparative assessment of the uncertainties of global surface ocean CO2 estimates using a machine-learning ensemble (CSIR-ML6 version 2019a) – have we hit the wall?
Luke Gregor, Alice D. Lebehot, Schalk Kok, and Pedro M. Scheel Monteiro
Geosci. Model Dev., 12, 5113–5136, https://doi.org/10.5194/gmd-12-5113-2019,https://doi.org/10.5194/gmd-12-5113-2019, 2019
Short summary
Improving the LPJmL4-SPITFIRE vegetation–fire model for South America using satellite data
Markus Drüke, Matthias Forkel, Werner von Bloh, Boris Sakschewski, Manoel Cardoso, Mercedes Bustamante, Jürgen Kurths, and Kirsten Thonicke
Geosci. Model Dev., 12, 5029–5054, https://doi.org/10.5194/gmd-12-5029-2019,https://doi.org/10.5194/gmd-12-5029-2019, 2019
Short summary
Accounting for carbon and nitrogen interactions in the global terrestrial ecosystem model ORCHIDEE (trunk version, rev 4999): multi-scale evaluation of gross primary production
Nicolas Vuichard, Palmira Messina, Sebastiaan Luyssaert, Bertrand Guenet, Sönke Zaehle, Josefine Ghattas, Vladislav Bastrikov, and Philippe Peylin
Geosci. Model Dev., 12, 4751–4779, https://doi.org/10.5194/gmd-12-4751-2019,https://doi.org/10.5194/gmd-12-4751-2019, 2019
Short summary
A new model of the coupled carbon, nitrogen, and phosphorus cycles in the terrestrial biosphere (QUINCY v1.0; revision 1996)
Tea Thum, Silvia Caldararu, Jan Engel, Melanie Kern, Marleen Pallandt, Reiner Schnur, Lin Yu, and Sönke Zaehle
Geosci. Model Dev., 12, 4781–4802, https://doi.org/10.5194/gmd-12-4781-2019,https://doi.org/10.5194/gmd-12-4781-2019, 2019
Short summary
Cited articles  
Ahlström, A., Schurgers, G., Arneth, A., and Smith, B.: Robustness and uncertainty in terrestrial ecosystem carbon response to CMIP5 climate change projections, Environ. Res. Lett., 7, 044008, https://doi.org/10.1088/1748-9326/7/4/044008, 2012. a
Albani, M., Medvigy, D., Hurtt, G. C., and Moorcroft, P. R.: The contributions of land-use change, CO2 fertilization, and climate variability to the eastern US carbon sink, Glob. Change Biol., 12, 2370–2390, https://doi.org/10.1111/j.1365-2486.2006.01254.x, 2006. a, b, c, d, e, f
Amthor, J. S.: The role of maintenance respiration in plant growth, Plant Cell Environ., 7, 561–569, https://doi.org/10.1111/1365-3040.ep11591833, 1984. a
Antonarakis, A. S., Saatchi, S. S., Chazdon, R. L., and Moorcroft, P. R.: Using Lidar and Radar measurements to constrain predictions of forest ecosystem structure and function, Ecol. Appl., 21, 1120–1137, https://doi.org/10.1890/10-0274.1, 2011. a, b
Antonarakis, A. S., Munger, J. W., and Moorcroft, P. R.: Imaging spectroscopy- and lidar-derived estimates of canopy composition and structure to improve predictions of forest carbon fluxes and ecosystem dynamics, Geophys. Res. Lett., 41, 2535–2542, https://doi.org/10.1002/2013GL058373, 2014. a
Publications Copernicus
Download
Short summary
Our paper describes the Ecosystem Demography model. This computer program calculates how plants and ground exchange heat, water, and carbon with the air, and how plants grow, reproduce and die in different climates. Most models simplify forests to an average big tree. We consider that tall, deep-rooted trees get more light and water than small plants, and that some plants can with shade and drought. This diversity helps us to better explain how plants live and interact with the atmosphere.
Our paper describes the Ecosystem Demography model. This computer program calculates how plants...
Citation